References

Chapter 1.1

Armstrong McKay, D.I., Staal, A., Abrams, J.F., Winkelmann, R., Sakschewski, B., Loriani, S., Fetzer, I., Cornell, S.E., Rockström, J. and Lenton, T.M. (2022) ‘Exceeding 1.5°C global warming could trigger multiple climate tipping points’, Science, 377(6611), p. eabn7950.  https://doi.org/10.1126/science.abn7950

Boers, N. (2021) ‘Observation-based early-warning signals for a collapse of the Atlantic Meridional Overturning Circulation’, Nature Climate Change, 11(8), pp. 680–688.  https://doi.org/10.1038/s41558-021-01097-4

Boers, N. and Rypdal, M. (2021) ‘Critical slowing down suggests that the western Greenland Ice Sheet is close to a tipping point’, Proceedings of the National Academy of Sciences, 118(21), p. e2024192118.  https://doi.org/10.1073/pnas.2024192118

Böhm, E., Lippold, J., Gutjahr, M., Frank, M., Blaser, P., Antz, B., Fohlmeister, J., Frank, N., Andersen, M.B. and Deininger, M. (2015) ‘Strong and deep Atlantic meridional overturning circulation during the last glacial cycle’, Nature, 517(7532), pp. 73–76.  https://doi.org/10.1038/nature14059

Boulton, C.A., Lenton, T.M. and Boers, N. (2022) ‘Pronounced loss of Amazon rainforest resilience since the early 2000s’, Nature Climate Change, 12(3), pp. 271–278.  https://doi.org/10.1038/s41558-022-01287-8

Christ, A.J., Bierman, P.R., Schaefer, J.M., Dahl-Jensen, D., Steffensen, J.P., Corbett, L.B., Peteet, D.M., Thomas, E.K., Steig, E.J., Rittenour, T.M., Tison, J.-L., Blard, P.-H., Perdrial, N., Dethier, D.P., Lini, A., Hidy, A.J., Caffee, M.W. and Southon, J. (2021) ‘A multimillion-year-old record of Greenland vegetation and glacial history preserved in sediment beneath 1.4 km of ice at Camp Century’, Proceedings of the National Academy of Sciences, 118(13), p. e2021442118.  https://doi.org/10.1073/pnas.2021442118

Dinerstein, E., Olson, D., Joshi, A., Vynne, C., Burgess, N.D., Wikramanayake, E., Hahn, N., Palminteri, S., Hedao, P., Noss, R., Hansen, M., Locke, H., Ellis, E.C., Jones, B., Barber, C.V., Hayes, R., Kormos, C., Martin, V., Crist, E., Sechrest, W., Price, L., Baillie, J.E.M., Weeden, D., Suckling, K., Davis, C., Sizer, N., Moore, R., Thau, D., Birch, T., Potapov, P., Turubanova, S., Tyukavina, A., De Souza, N., Pintea, L., Brito, J.C., Llewellyn, O.A., Miller, A.G., Patzelt, A., Ghazanfar, S.A., Timberlake, J., Klöser, H., Shennan-Farpón, Y., Kindt, R., Lillesø, J.-P.B., Van Breugel, P., Graudal, L., Voge, M., Al-Shammari, K.F. and Saleem, M. (2017) ‘An Ecoregion-Based Approach to Protecting Half the Terrestrial Realm’, BioScience, 67(6), pp. 534–545.  https://doi.org/10.1093/biosci/bix014

Ditlevsen, P. and Ditlevsen, S. (2023) ‘Warning of a forthcoming collapse of the Atlantic meridional overturning circulation’, Nature Communications, 14(1), p. 4254.  https://doi.org/10.1038/s41467-023-39810-w

Ellis, E.C., Gauthier, N., Klein Goldewijk, K., Bliege Bird, R., Boivin, N., Díaz, S., Fuller, D.Q., Gill, J.L., Kaplan, J.O., Kingston, N., Locke, H., McMichael, C.N.H., Ranco, D., Rick, T.C., Shaw, M.R., Stephens, L., Svenning, J.-C. and Watson, J.E.M. (2021) ‘People have shaped most of terrestrial nature for at least 12,000 years’, Proceedings of the National Academy of Sciences, 118(17), p. e2023483118.  https://doi.org/10.1073/pnas.2023483118

Feldmann, J. and Levermann, A. (2015) ‘Collapse of the West Antarctic Ice Sheet after local destabilization of the Amundsen Basin’, Proceedings of the National Academy of Sciences, 112(46), pp. 14191–14196.  https://doi.org/10.1073/pnas.1512482112

Folke, C., Biggs, R., Norström, A., Reyers, B. and Rockström, J. (2016) ‘Social-ecological resilience and biosphere-based sustainability science’, Ecology and Society, 21(3).  https://doi.org/10.5751/ES-08748-210341

Folke, C., Polasky, S., Rockström, J., Galaz, V., Westley, F., Lamont, M., Scheffer, M., Österblom, H., Carpenter, S.R., Chapin, F.S., Seto, K.C., Weber, E.U., Crona, B.I., Daily, G.C., Dasgupta, P., Gaffney, O., Gordon, L.J., Hoff, H., Levin, S.A., Lubchenco, J., Steffen, W. and Walker, B.H. (2021) ‘Our future in the Anthropocene biosphere’, Ambio, 50(4), pp. 834–869.  https://doi.org/10.1007/s13280-021-01544-8

Garbe, J., Albrecht, T., Levermann, A., Donges, J.F. and Winkelmann, R. (2020) ‘The hysteresis of the Antarctic Ice Sheet’, Nature, 585(7826), pp. 538–544.  https://doi.org/10.1038/s41586-020-2727-5

IPCC (2021) Annex VII: Glossary.  https://doi.org/10.1017/9781009157896.022.2215

Joughin, I., Smith, B.E. and Medley, B. (2014) ‘Marine Ice Sheet Collapse Potentially Under Way for the Thwaites Glacier Basin, West Antarctica’, Science, 344(6185), pp. 735–738.  https://doi.org/10.1126/science.1249055

Keith, D.A., Ferrer-Paris, J.R., Nicholson, E., Bishop, M.J., Polidoro, B.A., Ramirez-Llodra, E., Tozer, M.G., Nel, J.L., Mac Nally, R., Gregr, E.J., Watermeyer, K.E., Essl, F., Faber-Langendoen, D., Franklin, J., Lehmann, C.E.R., Etter, A., Roux, D.J., Stark, J.S., Rowland, J.A., Brummitt, N.A., Fernandez-Arcaya, U.C., Suthers, I.M., Wiser, S.K., Donohue, I., Jackson, L.J., Pennington, R.T., Iliffe, T.M., Gerovasileiou, V., Giller, P., Robson, B.J., Pettorelli, N., Andrade, A., Lindgaard, A., Tahvanainen, T., Terauds, A., Chadwick, M.A., Murray, N.J., Moat, J., Pliscoff, P., Zager, I. and Kingsford, R.T. (2022) ‘A function-based typology for Earth’s ecosystems’, Nature, 610(7932), pp. 513–518.  https://doi.org/10.1038/s41586-022-05318-4

Kump, L.R., Kasting, J.F. and Crane, R.G. (1999) The Earth System. New Jersey: Prentice Hall

Lenton, T.M. (2016) Earth System Science: A Very Short Introduction. Oxford University Press.  https://doi.org/10.1093/actrade/9780198718871.001.0001

Lenton, T.M., Held, H., Kriegler, E., Hall, J.W., Lucht, W., Rahmstorf, S. and Schellnhuber, H.J. (2008) ‘Tipping elements in the Earth’s climate system’, Proceedings of the National Academy of Sciences, 105(6), pp. 1786–1793.  https://doi.org/10.1073/pnas.0705414105

Rignot, E., Mouginot, J., Morlighem, M., Seroussi, H. and Scheuchl, B. (2014) ‘Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith, and Kohler glaciers, West Antarctica, from 1992 to 2011’, Geophysical Research Letters, 41(10), pp. 3502–3509.  https://doi.org/10.1002/2014GL060140

Robinson, A., Calov, R. and Ganopolski, A. (2012) ‘Multistability and critical thresholds of the Greenland ice sheet’, Nature Climate Change, 2(6), pp. 429–432.  https://doi.org/10.1038/nclimate1449

Scheffer, M., Bascompte, J., Brock, W.A., Brovkin, V., Carpenter, S.R., Dakos, V., Held, H., van Nes, E.H., Rietkerk, M. and Sugihara, G. (2009) ‘Early-warning signals for critical transitions’, Nature, 461(7260), pp. 53–59.  https://doi.org/10.1038/nature08227

Rockström, J. and Tuinenburg, O.A. (2020) ‘Hysteresis of tropical forests in the 21st century’, Nature Communications, 11(1), p. 4978.  https://doi.org/10.1038/s41467-020-18728-7

Turney, C.S.M., Fogwill, C.J., Golledge, N.R., McKay, N.P., van Sebille, E., Jones, R.T., Etheridge, D., Rubino, M., Thornton, D.P., Davies, S.M., Ramsey, C.B., Thomas, Z.A., Bird, M.I., Munksgaard, N.C., Kohno, M., Woodward, J., Winter, K., Weyrich, L.S., Rootes, C.M., Millman, H., Albert, P.G., Rivera, A., van Ommen, T., Curran, M., Moy, A., Rahmstorf, S., Kawamura, K., Hillenbrand, C.-D., Weber, M.E., Manning, C.J., Young, J. and Cooper, A. (2020) ‘Early Last Interglacial ocean warming drove substantial ice mass loss from Antarctica’, Proceedings of the National Academy of Sciences, 117(8), pp. 3996–4006.  https://doi.org/10.1073/pnas.1902469117

Waibel, M.S., Hulbe, C.L., Jackson, C.S. and Martin, D.F. (2018) ‘Rate of Mass Loss Across the Instability Threshold for Thwaites Glacier Determines Rate of Mass Loss for Entire Basin’, Geophysical Research Letters, 45(2), pp. 809–816.  https://doi.org/10.1002/2017GL076470
Wang, S., Foster, A., Lenz, E.A., Kessler, J.D., Stroeve, J.C., Anderson, L.O., Turetsky, M., Betts, R., Zou, S., Liu, W., Boos, W.R. and Hausfather, Z. (2023) ‘Mechanisms and Impacts of Earth System Tipping Elements’, Reviews of Geophysics, 61(1), p. e2021RG000757.  https://doi.org/10.1029/2021RG000757

Chapter 1.2

Abbot, D.S. and Tziperman, E. (2008) ‘Sea ice, high-latitude convection, and equable climates’, Geophysical Research Letters, 35(3).  https://doi.org/10.1029/2007GL032286

Abbot, D.S., Walker, C.C. and Tziperman, E. (2009) ‘Can a Convective Cloud Feedback Help to Eliminate Winter Sea Ice at High CO2 Concentrations?’, Journal of Climate, 22(21), pp. 5719–5731.  https://doi.org/10.1175/2009JCLI2854.1

Abernathey, R.P., Cerovecki, I., Holland, P.R., Newsom, E., Mazloff, M. and Talley, L.D. (2016) ‘Water-mass transformation by sea ice in the upper branch of the Southern Ocean overturning’, Nature Geoscience, 9(8), pp. 596–601.  https://doi.org/10.1038/ngeo2749

Adusumilli, S., Fricker, H.A., Medley, B., Padman, L. and Siegfried, M.R. (2020) ‘Interannual variations in meltwater input to the Southern Ocean from Antarctic ice shelves’, Nature Geoscience, 13(9), pp. 616–620.  https://doi.org/10.1038/s41561-020-0616-z

AMAP (2017) Snow, Water, Ice and Permafrost in the Arctic (SWIPA) 2017. Oslo, Norway: Arctic Monitoring and Assessment Programme (AMAP), p. xiv + 269 pp.  https://www.amap.no/documents/doc/snow-water-ice-and-permafrost-in-the-arctic-swipa-2017/1610 (Accessed: 12 October 2023)

Arias, P.A., Bellouin, N., Coppola, E., Jones, R.G., Krinner, G., Marotzke, J., Naik, V., Palmer, M.D., Plattner, G.-K., Rogelj, J., Rojas, M., Sillmann, J., Storelvmo, T., Thorne, P.W., Trewin, B., Achuta Rao, K., Adhikary, B., Allan, R.P., Armour, K., Bala, G., Barimalala, R., Berger, S., Canadell, J.G., Cassou, C., Cherchi, A., Collins, W., Collins, W.D., Connors, S.L., Corti, S., Cruz, F., Dentener, F.J., Dereczynski, C., Di Luca, A., Diongue Niang, A., Doblas-Reyes, F.J., Dosio, H. Douville, A., Engelbrecht, F., Eyring, V., Fischer, E., Forster, P., Fox-Kemper, B., Fuglestvedt, J.S., Fyfe, J.C., Gillett, N.P., Goldfarb, L., Gorodetskaya, I., Gutierrez, J.M., Hamdi, R., Hawkins, E., Hewitt, H.T., Hope, P., Islam, A.S., Jones, C., Kaufman, D.S., Kopp, R.E., Kosaka, Y., Kossin, J., Krakovska, S., Lee, J.-Y., Li, J., Mauritsen, T., Maycock, T.K., Meinshausen, M., Min, S.-K., Monteiro, P.M.S., Ngo-Duc, T., Otto, F., Pinto, I., Pirani, A., Raghavan, K., Ranasinghe, R., Ruane, A.C., Ruiz, L., Sallée, J.-B., Samset, B.H., Sathyendranath, S., Seneviratne, S.I., Sörensson, A.A., Szopa, S., Takayabu, I., Tréguier, A.-M., van den Hurk, B., Vautard, R., von Schuckmann, K., Zaehle, S., Zhang, X., and Zickfeld, K. (2021) ‘Technical Summary’, in Climate Change 2021 – The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, pp. 35–144.  https://doi.org/10.1017/9781009157896.002

Armitage, T.W.K. and Kwok, R. (2021) ‘SWOT and the ice-covered polar oceans: An exploratory analysis’, Advances in Space Research, 68(2), pp. 829–842.  https://doi.org/10.1016/j.asr.2019.07.006

Armour, K.C., Eisenman, I., Blanchard-Wrigglesworth, E., McCusker, K.E. and Bitz, C.M. (2011) ‘The reversibility of sea ice loss in a state-of-the-art climate model’, Geophysical Research Letters, 38(16).  https://doi.org/10.1029/2011GL048739

Arthern, R.J. and Williams, C.R. (2017) ‘The sensitivity of West Antarctica to the submarine melting feedback’, Geophysical Research Letters, 44(5), pp. 2352–2359.  https://doi.org/10.1002/2017GL072514

Bahr, D.B., Dyurgerov, M. and Meier, M.F. (2009) ‘Sea-level rise from glaciers and ice caps: A lower bound’, Geophysical Research Letters, 36(3).  https://doi.org/10.1029/2008GL036309

Bamber, J.L., Griggs, J.A., Hurkmans, R.T.W.L., Dowdeswell, J.A., Gogineni, S.P., Howat, I., Mouginot, J., Paden, J., Palmer, S., Rignot, E. and Steinhage, D. (2013) ‘A new bed elevation dataset for Greenland’, The Cryosphere, 7(2), pp. 499–510.  https://doi.org/10.5194/tc-7-499-2013

Bassis, J.N. and Jacobs, S. (2013) ‘Diverse calving patterns linked to glacier geometry’, Nature Geoscience, 6(10), pp. 833–836.  https://doi.org/10.1038/ngeo1887

Bassis, J.N. and Walker, C.C. (2011) ‘Upper and lower limits on the stability of calving glaciers from the yield strength envelope of ice’, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 468(2140), pp. 913–931.  https://doi.org/10.1098/rspa.2011.0422

Bathiany, S., Notz, D., Mauritsen, T., Raedel, G. and Brovkin, V. (2016) ‘On the Potential for Abrupt Arctic Winter Sea Ice Loss’, Journal of Climate, 29(7), pp. 2703–2719.  https://doi.org/10.1175/JCLI-D-15-0466.1

Bertram, R.A., Wilson, D.J., van de Flierdt, T., McKay, R.M., Patterson, M.O., Jimenez-Espejo, F.J., Escutia, C., Duke, G.C., Taylor-Silva, B.I. and Riesselman, C.R. (2018) ‘Pliocene deglacial event timelines and the biogeochemical response offshore Wilkes Subglacial Basin, East Antarctica’, Earth and Planetary Science Letters, 494, pp. 109–116.  https://doi.org/10.1016/j.epsl.2018.04.054

Blackburn, T., Edwards, G.H., Tulaczyk, S., Scudder, M., Piccione, G., Hallet, B., McLean, N., Zachos, J.C., Cheney, B. and Babbe, J.T. (2020) ‘Ice retreat in Wilkes Basin of East Antarctica during a warm interglacial’, Nature, 583(7817), pp. 554–559.  https://doi.org/10.1038/s41586-020-2484-5

Blasco, J., Tabone, I., Moreno-Parada, D., Robinson, A., Alvarez-Solas, J., Pattyn, F. and Montoya, M. (2023) ‘Antarctic Tipping points triggered by the mid-Pliocene warm climate’, Climate of the Past Discussions, pp. 1–29.  https://doi.org/10.5194/cp-2023-76

Bochow, N., Poltronieri, A., Robinson, A., Montoya, M., Rypdal, M. and Boers, N. (2023) ‘Overshooting the critical threshold for the Greenland ice sheet’, Nature, 622(7983), pp. 528–536.  https://doi.org/10.1038/s41586-023-06503-9

Bosson, J.B., Huss, M., Cauvy-Fraunié, S., Clément, J.C., Costes, G., Fischer, M., Poulenard, J. and Arthaud, F. (2023) ‘Future emergence of new ecosystems caused by glacial retreat’, Nature, 620(7974), pp. 562–569.  https://doi.org/10.1038/s41586-023-06302-2

Box, J.E., Fettweis, X., Stroeve, J.C., Tedesco, M., Hall, D.K. and Steffen, K. (2012) ‘Greenland ice sheet albedo feedback: thermodynamics and atmospheric drivers’, The Cryosphere, 6(4), pp. 821–839.  https://doi.org/10.5194/tc-6-821-2012

Broeke, M.R. van den, Munneke, P.K., Noël, B., Reijmer, C., Smeets, P., Berg, W.J. van de and Wessem, J.M. van (2023) ‘Contrasting current and future surface melt rates on the ice sheets of Greenland and Antarctica: Lessons from in situ observations and climate models’, PLOS Climate, 2(5), p. e0000203.  https://doi.org/10.1371/journal.pclm.0000203

Brown, J., Jr, O.J.F., Heginbottom, J.A. and Melnikov, E.S. (1997) Circum-Arctic map of permafrost and ground-ice conditions, Circum-Pacific Map. 45. U.S. Geological Survey.  https://doi.org/10.3133/cp45

Bulthuis, K., Arnst, M., Sun, S. and Pattyn, F. (2019) ‘Uncertainty quantification of the multi-centennial response of the Antarctic ice sheet to climate change’, The Cryosphere, 13(4), pp. 1349–1380.  https://doi.org/10.5194/tc-13-1349-2019

Buri, P., Pellicciotti, F., Steiner, J.F., Miles, E.S. and Immerzeel, W.W. (2016) ‘A grid-based model of backwasting of supraglacial ice cliffs on debris-covered glaciers’, Annals of Glaciology, 57(71), pp. 199–211.  https://doi.org/10.3189/2016AoG71A059

Burke, E.J., Chadburn, S.E., Huntingford, C. and Jones, C.D. (2018) ‘CO2 loss by permafrost thawing implies additional emissions reductions to limit warming to 1.5 or 2 °C’, Environmental Research Letters, 13(2), p. 024024.  https://doi.org/10.1088/1748-9326/aaa138

Burke, E.J., Ekici, A., Huang, Y., Chadburn, S.E., Huntingford, C., Ciais, P., Friedlingstein, P., Peng, S. and Krinner, G. (2017) ‘Quantifying uncertainties of permafrost carbon–climate feedbacks’, Biogeosciences, 14(12), pp. 3051–3066.  https://doi.org/10.5194/bg-14-3051-2017

Burke, E.J., Zhang, Y. and Krinner, G. (2020) ‘Evaluating permafrost physics in the Coupled Model Intercomparison Project 6 (CMIP6) models and their sensitivity to climate change’, The Cryosphere, 14(9), pp. 3155–3174.  https://doi.org/10.5194/tc-14-3155-2020

Canadell, J.G., Monteiro, P.M.S., Costa, M.H., Cunha, L.C. da, Cox, P.M., Eliseev, A.V., Henson, S., Ishii, M., Jaccard, S., Koven, C., Lohila, A., Patra, P.K., Piao, S., Rogelj, J., Syampungani, S., Zaehle, S. and Zickfeld, K. (2021) ‘Chapter 5: Global Carbon and other Biogeochemical Cycles and Feedbacks’, in V. Masson-Delmotte, P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds) Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Repor. Cambridge University Press

Capron, E., Govin, A., Feng, R., Otto-Bliesner, B.L. and Wolff, E.W. (2017) ‘Critical evaluation of climate syntheses to benchmark CMIP6/PMIP4 127 ka Last Interglacial simulations in the high-latitude regions’, Quaternary Science Reviews, 168, pp. 137–150.  https://doi.org/10.1016/j.quascirev.2017.04.019

Carrivick, J.L. and Tweed, F.S. (2016) ‘A global assessment of the societal impacts of glacier outburst floods’, Global and Planetary Change, 144, pp. 1–16.  https://doi.org/10.1016/j.gloplacha.2016.07.001

Chadburn, S.E., Burke, E.J., Cox, P.M., Friedlingstein, P., Hugelius, G. and Westermann, S. (2017) ‘An observation-based constraint on permafrost loss as a function of global warming’, Nature Climate Change, 7(5), pp. 340–344.  https://doi.org/10.1038/nclimate3262

Chambers, C., Greve, R., Obase, T., Saito, F. and Abe-Ouchi, A. (2022) ‘Mass loss of the Antarctic ice sheet until the year 3000 under a sustained late-21st-century climate’, Journal of Glaciology, 68(269), pp. 605–617.  https://doi.org/10.1017/jog.2021.124

Chandler, D. and Langebroek, P. (2021) ‘Southern Ocean sea surface temperature synthesis: Part 2. Penultimate glacial and last interglacial’, Quaternary Science Reviews, 271, p. 107190.  https://doi.org/10.1016/j.quascirev.2021.107190

Christ, A.J., Bierman, P.R., Schaefer, J.M., Dahl-Jensen, D., Steffensen, J.P., Corbett, L.B., Peteet, D.M., Thomas, E.K., Steig, E.J., Rittenour, T.M., Tison, J.-L., Blard, P.-H., Perdrial, N., Dethier, D.P., Lini, A., Hidy, A.J., Caffee, M.W. and Southon, J. (2021) ‘A multimillion-year-old record of Greenland vegetation and glacial history preserved in sediment beneath 1.4 km of ice at Camp Century’, Proceedings of the National Academy of Sciences, 118(13), p. e2021442118.  https://doi.org/10.1073/pnas.2021442118

Clark, P.U., Shakun, J.D., Marcott, S.A., Mix, A.C., Eby, M., Kulp, S., Levermann, A., Milne, G.A., Pfister, P.L., Santer, B.D., Schrag, D.P., Solomon, S., Stocker, T.F., Strauss, B.H., Weaver, A.J., Winkelmann, R., Archer, D., Bard, E., Goldner, A., Lambeck, K., Pierrehumbert, R.T. and Plattner, G.-K. (2016) ‘Consequences of twenty-first-century policy for multi-millennial climate and sea-level change’, Nature Climate Change, 6(4), pp. 360–369.  https://doi.org/10.1038/nclimate2923

Clarke, J., Huntingford, C., Ritchie, P. and Cox, P. (2021) ‘The compost bomb instability in the continuum limit’, The European Physical Journal Special Topics, 230(16), pp. 3335–3341.  https://doi.org/10.1140/epjs/s11734-021-00013-3

Clerc, F., Minchew, B.M. and Behn, M.D. (2019) ‘Marine Ice Cliff Instability Mitigated by Slow Removal of Ice Shelves’, Geophysical Research Letters, 46(21), pp. 12108–12116.  https://doi.org/10.1029/2019GL084183

Compagno, L., Huss, M., Miles, E.S., McCarthy, M.J., Zekollari, H., Dehecq, A., Pellicciotti, F. and Farinotti, D. (2022) ‘Modelling supraglacial debris-cover evolution from the single-glacier to the regional scale: an application to High Mountain Asia’, The Cryosphere, 16(5), pp. 1697–1718.  https://doi.org/10.5194/tc-16-1697-2022

Cook, C.P., van de Flierdt, T., Williams, T., Hemming, S.R., Iwai, M., Kobayashi, M., Jimenez-Espejo, F.J., Escutia, C., González, J.J., Khim, B.-K., McKay, R.M., Passchier, S., Bohaty, S.M., Riesselman, C.R., Tauxe, L., Sugisaki, S., Galindo, A.L., Patterson, M.O., Sangiorgi, F., Pierce, E.L., Brinkhuis, H., Klaus, A., Fehr, A., Bendle, J.A.P., Bijl, P.K., Carr, S.A., Dunbar, R.B., Flores, J.A., Hayden, T.G., Katsuki, K., Kong, G.S., Nakai, M., Olney, M.P., Pekar, S.F., Pross, J., Röhl, U., Sakai, T., Shrivastava, P.K., Stickley, C.E., Tuo, S., Welsh, K. and Yamane, M. (2013) ‘Dynamic behaviour of the East Antarctic ice sheet during Pliocene warmth’, Nature Geoscience, 6(9), pp. 765–769.  https://doi.org/10.1038/ngeo1889

Cook, J.M., Hodson, A.J., Taggart, A.J., Mernild, S.H. and Tranter, M. (2017) ‘A predictive model for the spectral “bioalbedo” of snow’, Journal of Geophysical Research: Earth Surface, 122(1), pp. 434–454.  https://doi.org/10.1002/2016JF003932

Cook, J.M., Tedstone, A.J., Williamson, C., McCutcheon, J., Hodson, A.J., Dayal, A., Skiles, M., Hofer, S., Bryant, R., McAree, O., McGonigle, A., Ryan, J., Anesio, A.M., Irvine-Fynn, T.D.L., Hubbard, A., Hanna, E., Flanner, M., Mayanna, S., Benning, L.G., van As, D., Yallop, M., McQuaid, J.B., Gribbin, T. and Tranter, M. (2020) ‘Glacier algae accelerate melt rates on the south-western Greenland Ice Sheet’, The Cryosphere, 14(1), pp. 309–330.  https://doi.org/10.5194/tc-14-309-2020

Coulon, V., Bulthuis, K., Whitehouse, P.L., Sun, S., Haubner, K., Zipf, L. and Pattyn, F. (2021) ‘Contrasting Response of West and East Antarctic Ice Sheets to Glacial Isostatic Adjustment’, Journal of Geophysical Research: Earth Surface, 126(7), p. e2020JF006003.  https://doi.org/10.1029/2020JF006003

De Rydt, J., Reese, R., Paolo, F.S. and Gudmundsson, G.H. (2021) ‘Drivers of Pine Island Glacier speed-up between 1996 and 2016’, The Cryosphere, 15(1), pp. 113–132.  https://doi.org/10.5194/tc-15-113-2021

DeConto, R.M. and Pollard, D. (2003) ‘Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2’, Nature, 421(6920), pp. 245–249.  https://doi.org/10.1038/nature01290

DeConto, R.M. and Pollard, D. (2016) ‘Contribution of Antarctica to past and future sea-level rise’, Nature, 531(7596), pp. 591–597.  https://doi.org/10.1038/nature17145

DeConto, R.M., Pollard, D., Alley, R.B., Velicogna, I., Gasson, E., Gomez, N., Sadai, S., Condron, A., Gilford, D.M., Ashe, E.L., Kopp, R.E., Li, D. and Dutton, A. (2021) ‘The Paris Climate Agreement and future sea-level rise from Antarctica’, Nature, 593(7857), pp. 83–89.  https://doi.org/10.1038/s41586-021-03427-0

Dehecq, A., Gourmelen, N., Gardner, A.S., Brun, F., Goldberg, D., Nienow, P.W., Berthier, E., Vincent, C., Wagnon, P. and Trouvé, E. (2019) ‘Twenty-first century glacier slowdown driven by mass loss in High Mountain Asia’, Nature Geoscience, 12(1), pp. 22–27.  https://doi.org/10.1038/s41561-018-0271-9

Dmitrenko, I.A., Kirillov, S.A., Tremblay, L.B., Kassens, H., Anisimov, O.A., Lavrov, S.A., Razumov, S.O. and Grigoriev, M.N. (2011) ‘Recent changes in shelf hydrography in the Siberian Arctic: Potential for subsea permafrost instability’, Journal of Geophysical Research: Oceans, 116(C10).  https://doi.org/10.1029/2011JC007218

Doblas-Reyes, F.J., Sörensson, A.A., Almazroui, M., Dosio, A., Gutowski, W.J., Haarsma, R., Hamdi, R., Hewitson, B., Kwon, W.-T., Lamptey, B.L., Maraun, D., Stephenson, T.S., Takayabu, I., Terray, L., Turner, A. and Zuo, Z. (2021) ‘Chapter 10: Linking global to regional climate change’, in V. Masson-Delmotte, P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds) Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press

Docquier, D., Fuentes-Franco, R., Koenigk, T. and Fichefet, T. (2020) ‘Sea Ice—Ocean Interactions in the Barents Sea Modeled at Different Resolutions’, Frontiers in Earth Science, 8.  https://www.frontiersin.org/articles/10.3389/feart.2020.00172 (Accessed: 16 October 2023)

Drijfhout, S., Bathiany, S., Beaulieu, C., Brovkin, V., Claussen, M., Huntingford, C., Scheffer, M., Sgubin, G. and Swingedouw, D. (2015) ‘Catalogue of abrupt shifts in Intergovernmental Panel on Climate Change climate models’, Proceedings of the National Academy of Sciences, 112(43), pp. E5777–E5786.  https://doi.org/10.1073/pnas.1511451112

Edwards, T.L., Brandon, M.A., Durand, G., Edwards, N.R., Golledge, N.R., Holden, P.B., Nias, I.J., Payne, A.J., Ritz, C. and Wernecke, A. (2019) ‘Revisiting Antarctic ice loss due to marine ice-cliff instability’, Nature, 566(7742), pp. 58–64.  https://doi.org/10.1038/s41586-019-0901-4

Eisenman, I. (2010) ‘Geographic muting of changes in the Arctic sea ice cover’, Geophysical Research Letters, 37(16).  https://doi.org/10.1029/2010GL043741

Eisenman, I. and Wettlaufer, J.S. (2009) ‘Nonlinear threshold behavior during the loss of Arctic sea ice’, Proceedings of the National Academy of Sciences, 106(1), pp. 28–32.  https://doi.org/10.1073/pnas.0806887106

Engels, A., Marotzke, J., Gresse, E., López-Rivera, A., Pagnone, A. and Wilkens, J. (2023) Hamburg Climate Futures Outlook: The plausibility of a 1.5°C limit to global warming – social drivers and physical processes. Universität Hamburg.  https://www.fdr.uni-hamburg.de/record/11230 (Accessed: 16 October 2023)

van Everdingen, R.O. (2005) MULTI-LANGUAGE GLOSSARY of PERMAFROST and RELATED GROUND-ICE TERMS. International Permafrost Association (IPA).

Fabbri, S., Hauschild, M.Z., Lenton, T.M. and Owsianiak, M. (2021) ‘Multiple Climate Tipping Points Metrics for Improved Sustainability Assessment of Products and Services’, Environmental Science & Technology, 55(5), pp. 2800–2810.  https://doi.org/10.1021/acs.est.0c02928

Favier, L., Durand, G., Cornford, S.L., Gudmundsson, G.H., Gagliardini, O., Gillet-Chaulet, F., Zwinger, T., Payne, A.J. and Le Brocq, A.M. (2014) ‘Retreat of Pine Island Glacier controlled by marine ice-sheet instability’, Nature Climate Change, 4(2), pp. 117–121.  https://doi.org/10.1038/nclimate2094

Feldmann, J. and Levermann, A. (2015) ‘Collapse of the West Antarctic Ice Sheet after local destabilization of the Amundsen Basin’, Proceedings of the National Academy of Sciences, 112(46), pp. 14191–14196.  https://doi.org/10.1073/pnas.1512482112

Fox-Kemper, B., Hewitt, H.T., Xiao, C., Aðalgeirsdóttir, G., Drijfhout, S.S., Edwards, T.L., Golledge, N.R., Hemer, M., Kopp, R.E., Krinner, G., Mix, A., Notz, D., Nowicki, S., Nurhati, I.S., Ruiz, L., Sallée, J.-B., Slangen, A.B.A. and Yu, Y. (2021) ‘Chapter 9: Ocean, Cryosphere and Sea Level Change’, in V. Masson-Delmotte, P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds) Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press

Fretwell, P., Pritchard, H.D., Vaughan, D.G., Bamber, J.L., Barrand, N.E., Bell, R., Bianchi, C., Bingham, R.G., Blankenship, D.D., Casassa, G., Catania, G., Callens, D., Conway, H., Cook, A.J., Corr, H.F.J., Damaske, D., Damm, V., Ferraccioli, F., Forsberg, R., Fujita, S., Gim, Y., Gogineni, P., Griggs, J.A., Hindmarsh, R.C.A., Holmlund, P., Holt, J.W., Jacobel, R.W., Jenkins, A., Jokat, W., Jordan, T., King, E.C., Kohler, J., Krabill, W., Riger-Kusk, M., Langley, K.A., Leitchenkov, G., Leuschen, C., Luyendyk, B.P., Matsuoka, K., Mouginot, J., Nitsche, F.O., Nogi, Y., Nost, O.A., Popov, S.V., Rignot, E., Rippin, D.M., Rivera, A., Roberts, J., Ross, N., Siegert, M.J., Smith, A.M., Steinhage, D., Studinger, M., Sun, B., Tinto, B.K., Welch, B.C., Wilson, D., Young, D.A., Xiangbin, C. and Zirizzotti, A. (2013) ‘Bedmap2: improved ice bed, surface and thickness datasets for Antarctica’, The Cryosphere, 7(1), pp. 375–393.  https://doi.org/10.5194/tc-7-375-2013

Fyke, J., Sergienko, O., Löfverström, M., Price, S. and Lenaerts, J.T.M. (2018) ‘An Overview of Interactions and Feedbacks Between Ice Sheets and the Earth System’, Reviews of Geophysics, 56(2), pp. 361–408.  https://doi.org/10.1029/2018RG000600

Gabbi, J., Huss, M., Bauder, A., Cao, F. and Schwikowski, M. (2015) ‘The impact of Saharan dust and black carbon on albedo and long-term mass balance of an Alpine glacier’, The Cryosphere, 9(4), pp. 1385–1400.  https://doi.org/10.5194/tc-9-1385-2015

Garbe, J., Albrecht, T., Levermann, A., Donges, J.F. and Winkelmann, R. (2020) ‘The hysteresis of the Antarctic Ice Sheet’, Nature, 585(7826), pp. 538–544.  https://doi.org/10.1038/s41586-020-2727-5

Gardner, A.S., Moholdt, G., Scambos, T., Fahnstock, M., Ligtenberg, S., van den Broeke, M. and Nilsson, J. (2018) ‘Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years’, The Cryosphere, 12(2), pp. 521–547.  https://doi.org/10.5194/tc-12-521-2018

Gasser, T., Kechiar, M., Ciais, P., Burke, E.J., Kleinen, T., Zhu, D., Huang, Y., Ekici, A. and Obersteiner, M. (2018) ‘Path-dependent reductions in CO2 emission budgets caused by permafrost carbon release’, Nature Geoscience, 11(11), pp. 830–835.  https://doi.org/10.1038/s41561-018-0227-0

Gasson, E., DeConto, R.M., Pollard, D. and Levy, R.H. (2016) ‘Dynamic Antarctic ice sheet during the early to mid-Miocene’, Proceedings of the National Academy of Sciences, 113(13), pp. 3459–3464.  https://doi.org/10.1073/pnas.1516130113

Golledge, N.R., Clark, P.U., He, F., Dutton, A., Turney, C.S.M., Fogwill, C.J., Naish, T.R., Levy, R.H., McKay, R.M., Lowry, D.P., Bertler, N. a. N., Dunbar, G.B. and Carlson, A.E. (2021) ‘Retreat of the Antarctic Ice Sheet During the Last Interglaciation and Implications for Future Change’, Geophysical Research Letters, 48(17), p. e2021GL094513.  https://doi.org/10.1029/2021GL094513

Golledge, N.R., Keller, E.D., Gomez, N., Naughten, K.A., Bernales, J., Trusel, L.D. and Edwards, T.L. (2019) ‘Global environmental consequences of twenty-first-century ice-sheet melt’, Nature, 566(7742), pp. 65–72.  https://doi.org/10.1038/s41586-019-0889-9

Golledge, N.R., Kowalewski, D.E., Naish, T.R., Levy, R.H., Fogwill, C.J. and Gasson, E.G.W. (2015) ‘The multi-millennial Antarctic commitment to future sea-level rise’, Nature, 526(7573), pp. 421–425.  https://doi.org/10.1038/nature15706

Golledge, N.R., Levy, R.H., McKay, R.M. and Naish, T.R. (2017) ‘East Antarctic ice sheet most vulnerable to Weddell Sea warming’, Geophysical Research Letters, 44(5), pp. 2343–2351.  https://doi.org/10.1002/2016GL072422

Gomez, N., Mitrovica, J.X., Huybers, P. and Clark, P.U. (2010) ‘Sea level as a stabilizing factor for marine-ice-sheet grounding lines’, Nature Geoscience, 3(12), pp. 850–853.  https://doi.org/10.1038/ngeo1012

Goosse, H., Arzel, O., Bitz, C.M., de Montety, A. and Vancoppenolle, M. (2009) ‘Increased variability of the Arctic summer ice extent in a warmer climate’, Geophysical Research Letters, 36(23).  https://doi.org/10.1029/2009GL040546

Grant, G.R., Naish, T.R., Dunbar, G.B., Stocchi, P., Kominz, M.A., Kamp, P.J.J., Tapia, C.A., McKay, R.M., Levy, R.H. and Patterson, M.O. (2019) ‘The amplitude and origin of sea-level variability during the Pliocene epoch’, Nature, 574(7777), pp. 237–241.  https://doi.org/10.1038/s41586-019-1619-z

Gregory, J.M., George, S.E. and Smith, R.S. (2020) ‘Large and irreversible future decline of the Greenland ice sheet’, The Cryosphere, 14(12), pp. 4299–4322.  https://doi.org/10.5194/tc-14-4299-2020

Gregory, J.M., Stott, P.A., Cresswell, D.J., Rayner, N.A., Gordon, C. and Sexton, D.M.H. (2002) ‘Recent and future changes in Arctic sea ice simulated by the HadCM3 AOGCM’, Geophysical Research Letters, 29(24), pp. 28-1-28–4.  https://doi.org/10.1029/2001GL014575

Grosse, G., Jones, B. and Arp, C. (2013) ‘8.21 Thermokarst Lakes, Drainage, and Drained Basins’, in J.F. Shroder (ed.) Treatise on Geomorphology. San Diego: Academic Press, pp. 325–353.  https://doi.org/10.1016/B978-0-12-374739-6.00216-5

Gudmundsson, G.H., Krug, J., Durand, G., Favier, L. and Gagliardini, O. (2012) ‘The stability of grounding lines on retrograde slopes’, The Cryosphere, 6(6), pp. 1497–1505.  https://doi.org/10.5194/tc-6-1497-2012

Haeberli, W. and Hoelzle, M. (1995) ‘Application of inventory data for estimating characteristics of and regional climate-change effects on mountain glaciers: a pilot study with the European Alps’, Annals of Glaciology, 21, pp. 206–212.  https://doi.org/10.3189/S0260305500015834

Hankel, C. and Tziperman, E. (2021) ‘The Role of Atmospheric Feedbacks in Abrupt Winter Arctic Sea Ice Loss in Future Warming Scenarios’, Journal of Climate, 34(11), pp. 4435–4447.  https://doi.org/10.1175/JCLI-D-20-0558.1

Haseloff, M. and Sergienko, O.V. (2018) ‘The effect of buttressing on grounding line dynamics’, Journal of Glaciology, 64(245), pp. 417–431.  https://doi.org/10.1017/jog.2018.30

Hill, E.A., Urruty, B., Reese, R., Garbe, J., Gagliardini, O., Durand, G., Gillet-Chaulet, F., Gudmundsson, G.H., Winkelmann, R., Chekki, M., Chandler, D. and Langebroek, P.M. (2023) ‘The stability of present-day Antarctic grounding lines – Part 1: No indication of marine ice sheet instability in the current geometry’, The Cryosphere, 17(9), pp. 3739–3759.  https://doi.org/10.5194/tc-17-3739-2023

Hjort, J., Karjalainen, O., Aalto, J., Westermann, S., Romanovsky, V.E., Nelson, F.E., Etzelmüller, B. and Luoto, M. (2018) ‘Degrading permafrost puts Arctic infrastructure at risk by mid-century’, Nature Communications, 9(1), p. 5147.  https://doi.org/10.1038/s41467-018-07557-4

Hjort, J., Streletskiy, D., Doré, G., Wu, Q., Bjella, K. and Luoto, M. (2022) ‘Impacts of permafrost degradation on infrastructure’, Nature Reviews Earth & Environment, 3(1), pp. 24–38.  https://doi.org/10.1038/s43017-021-00247-8

Hock, Regine, Bliss, A., Marzeion, B., Giesen, R.H., Hirabayashi, Y., Huss, M., Radić, V. and Slangen, A.B.A. (2019) ‘GlacierMIP – A model intercomparison of global-scale glacier mass-balance models and projections’, Journal of Glaciology, 65(251), pp. 453–467.  https://doi.org/10.1017/jog.2019.22

Hock, R., Rasul, G., Adler, C., Cáceres, B., Gruber, S., Hirabayashi, Y., Jackson, M., Kääb, A., Kang, S., Kutuzov, S., Milner, A., Molau, U., Morin, S., Orlove, B. and Steltzer, H.I. (2019) ‘Chapter 2: High Mountain Areas’, in H.-O. Pörtner, D.C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, and N.M. Weyer (eds) IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, pp. 131–202.

Hoffman, J.S., Clark, P.U., Parnell, A.C. and He, F. (2017) ‘Regional and global sea-surface temperatures during the last interglaciation’, Science, 355(6322), pp. 276–279.  https://doi.org/10.1126/science.aai8464

Hollesen, J., Matthiesen, H., Møller, A.B. and Elberling, B. (2015) ‘Permafrost thawing in organic Arctic soils accelerated by ground heat production’, Nature Climate Change, 5(6), pp. 574–578.  https://doi.org/10.1038/nclimate2590

Höning, D., Willeit, M., Calov, R., Klemann, V., Bagge, M. and Ganopolski, A. (2023) ‘Multistability and Transient Response of the Greenland Ice Sheet to Anthropogenic CO2 Emissions’, Geophysical Research Letters, 50(6), p. e2022GL101827.  https://doi.org/10.1029/2022GL101827

Hugelius, G., Loisel, J., Chadburn, S., Jackson, R.B., Jones, M., MacDonald, G., Marushchak, M., Olefeldt, D., Packalen, M., Siewert, M.B., Treat, C., Turetsky, M., Voigt, C. and Yu, Z. (2020) ‘Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw’, Proceedings of the National Academy of Sciences, 117(34), pp. 20438–20446.  https://doi.org/10.1073/pnas.1916387117

Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J.W., Schuur, E. a. G., Ping, C.-L., Schirrmeister, L., Grosse, G., Michaelson, G.J., Koven, C.D., O’Donnell, J.A., Elberling, B., Mishra, U., Camill, P., Yu, Z., Palmtag, J. and Kuhry, P. (2014) ‘Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps’, Biogeosciences, 11(23), pp. 6573–6593.  https://doi.org/10.5194/bg-11-6573-2014

Hugonnet, R., McNabb, R., Berthier, E., Menounos, B., Nuth, C., Girod, L., Farinotti, D., Huss, M., Dussaillant, I., Brun, F. and Kääb, A. (2021) ‘Accelerated global glacier mass loss in the early twenty-first century’, Nature, 592(7856), pp. 726–731.  https://doi.org/10.1038/s41586-021-03436-z

Huss, M. and Hock, R. (2018) ‘Global-scale hydrological response to future glacier mass loss’, Nature Climate Change, 8(2), pp. 135–140.  https://doi.org/10.1038/s41558-017-0049-x

Hutchinson, D.K., Coxall, H.K., Lunt, D.J., Steinthorsdottir, M., de Boer, A.M., Baatsen, M., von der Heydt, A., Huber, M., Kennedy-Asser, A.T., Kunzmann, L., Ladant, J.-B., Lear, C.H., Moraweck, K., Pearson, P.N., Piga, E., Pound, M.J., Salzmann, U., Scher, H.D., Sijp, W.P., Śliwińska, K.K., Wilson, P.A. and Zhang, Z. (2021) ‘The Eocene–Oligocene transition: a review of marine and terrestrial proxy data, models and model–data comparisons’, Climate of the Past, 17(1), pp. 269–315.  https://doi.org/10.5194/cp-17-269-2021

Huybrechts, P. (1994) ‘Formation and disintegration of the Antarctic ice sheet’, Annals of Glaciology, 20, pp. 336–340.  https://doi.org/10.3189/1994AoG20-1-336-340

Iizuka, M., Seki, O., Wilson, D.J., Suganuma, Y., Horikawa, K., van de Flierdt, T., Ikehara, M., Itaki, T., Irino, T., Yamamoto, M., Hirabayashi, M., Matsuzaki, H. and Sugisaki, S. (2023) ‘Multiple episodes of ice loss from the Wilkes Subglacial Basin during the Last Interglacial’, Nature Communications, 14(1), p. 2129.  https://doi.org/10.1038/s41467-023-37325-y

Intergovernmental Panel on Climate Change (IPCC) (2021) Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Edited by V. Masson-Delmotte, P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou. Cambridge University Press

Jahn, A. (2018) ‘Reduced probability of ice-free summers for 1.5 °C compared to 2 °C warming’, Nature Climate Change, 8(5), pp. 409–413.  https://doi.org/10.1038/s41558-018-0127-8

Jakobs, C.L., Reijmer, C.H., Smeets, C.J.P.P., Trusel, L.D., Berg, W.J. van de, Broeke, M.R. van den and Wessem, J.M. van (2020) ‘A benchmark dataset of in situ Antarctic surface melt rates and energy balance’, Journal of Glaciology, 66(256), pp. 291–302.  https://doi.org/10.1017/jog.2020.6

James, R.H., Bousquet, P., Bussmann, I., Haeckel, M., Kipfer, R., Leifer, I., Niemann, H., Ostrovsky, I., Piskozub, J., Rehder, G., Treude, T., Vielstädte, L. and Greinert, J. (2016) ‘Effects of climate change on methane emissions from seafloor sediments in the Arctic Ocean: A review’, Limnology and Oceanography, 61(S1), pp. S283–S299.  https://doi.org/10.1002/lno.10307

Jóhannesson, T., Raymond, C. and Waddington, E. (1989) ‘Time–Scale for Adjustment of Glaciers to Changes in Mass Balance’, Journal of Glaciology, 35(121), pp. 355–369.  https://doi.org/10.3189/S002214300000928X

Joughin, I., Smith, B.E. and Medley, B. (2014) ‘Marine Ice Sheet Collapse Potentially Under Way for the Thwaites Glacier Basin, West Antarctica’, Science, 344(6185), pp. 735–738.  https://doi.org/10.1126/science.1249055

Kääb, A., Bazilova, V., Leclercq, P.W., Mannerfelt, E.S. and Strozzi, T. (2023) ‘Global clustering of recent glacier surges from radar backscatter data, 2017–2022’, Journal of Glaciology, pp. 1–9.  https://doi.org/10.1017/jog.2023.35

Kääb, A., Berthier, E., Nuth, C., Gardelle, J. and Arnaud, Y. (2012) ‘Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas’, Nature, 488(7412), pp. 495–498.  https://doi.org/10.1038/nature11324

Kääb, A., Jacquemart, M., Gilbert, A., Leinss, S., Girod, L., Huggel, C., Falaschi, D., Ugalde, F., Petrakov, D., Chernomorets, S., Dokukin, M., Paul, F., Gascoin, S., Berthier, E. and Kargel, J.S. (2021) ‘Sudden large-volume detachments of low-angle mountain glaciers – more frequent than thought?’, The Cryosphere, 15(4), pp. 1751–1785.  https://doi.org/10.5194/tc-15-1751-2021

Kachuck, S.B., Martin, D.F., Bassis, J.N. and Price, S.F. (2020) ‘Rapid Viscoelastic Deformation Slows Marine Ice Sheet Instability at Pine Island Glacier’, Geophysical Research Letters, 47(10), p. e2019GL086446.  https://doi.org/10.1029/2019GL086446

Kaser, G., Großhauser, M. and Marzeion, B. (2010) ‘Contribution potential of glaciers to water availability in different climate regimes’, Proceedings of the National Academy of Sciences, 107(47), pp. 20223–20227.  https://doi.org/10.1073/pnas.1008162107

Khvorostyanov, D.V., Krinner, G., Ciais, P., Heimann, M. and Zimov, S.A. (2008) ‘Vulnerability of permafrost carbon to global warming. Part I: model description and role of heat generated by organic matter decomposition’, Tellus B, 60(2), pp. 250–264.  https://doi.org/10.1111/j.1600-0889.2007.00333.x

Kim, Y.-H., Min, S.-K., Gillett, N.P., Notz, D. and Malinina, E. (2023) ‘Observationally-constrained projections of an ice-free Arctic even under a low emission scenario’, Nature Communications, 14(1), p. 3139.  https://doi.org/10.1038/s41467-023-38511-8

King, M.D., Howat, I.M., Candela, S.G., Noh, M.J., Jeong, S., Noël, B.P.Y., van den Broeke, M.R., Wouters, B. and Negrete, A. (2020) ‘Dynamic ice loss from the Greenland Ice Sheet driven by sustained glacier retreat’, Communications Earth & Environment, 1(1), pp. 1–7.  https://doi.org/10.1038/s43247-020-0001-2

Kleinen, T. and Brovkin, V. (2018) ‘Pathway-dependent fate of permafrost region carbon’, Environmental Research Letters, 13(9), p. 094001.  https://doi.org/10.1088/1748-9326/aad824

Kloenne, U., Nauels, A., Pearson, P., DeConto, R.M., Findlay, H.S., Hugelius, G., Robinson, A., Rogelj, J., Schuur, E.A.G., Stroeve, J. and Schleussner, C.-F. (2023) ‘Only halving emissions by 2030 can minimize risks of crossing cryosphere thresholds’, Nature Climate Change, 13(1), pp. 9–11.  https://doi.org/10.1038/s41558-022-01566-4

Knight, J. and Harrison, S. (2014) ‘Mountain glacial and paraglacial environments under global climate change: lessons from the past, future directions and policy implications’, Geografiska Annaler: Series A, Physical Geography, 96(3), pp. 245–264.  https://doi.org/10.1111/geoa.12051

Kochtitzky, W. and Copland, L. (2022a) ‘Retreat of Northern Hemisphere Marine-Terminating Glaciers, 2000–2020’, Geophysical Research Letters, 49(3), p. e2021GL096501.  https://doi.org/10.1029/2021GL096501

Kochtitzky, W., Copland, L., Van Wychen, W., Hugonnet, R., Hock, R., Dowdeswell, J.A., Benham, T., Strozzi, T., Glazovsky, A., Lavrentiev, I., Rounce, D.R., Millan, R., Cook, A., Dalton, A., Jiskoot, H., Cooley, J., Jania, J. and Navarro, F. (2022b) ‘The unquantified mass loss of Northern Hemisphere marine-terminating glaciers from 2000–2020’, Nature Communications, 13(1), p. 5835.  https://doi.org/10.1038/s41467-022-33231-x

Köhler, P., Knorr, G. and Bard, E. (2014) ‘Permafrost thawing as a possible source of abrupt carbon release at the onset of the Bølling/Allerød’, Nature Communications, 5(1), p. 5520.  https://doi.org/10.1038/ncomms6520

Koven, C.D., Ringeval, B., Friedlingstein, P., Ciais, P., Cadule, P., Khvorostyanov, D., Krinner, G. and Tarnocai, C. (2011) ‘Permafrost carbon-climate feedbacks accelerate global warming’, Proceedings of the National Academy of Sciences, 108(36), pp. 14769–14774.  https://doi.org/10.1073/pnas.1103910108

Landy, J.C., Dawson, G.J., Tsamados, M., Bushuk, M., Stroeve, J.C., Howell, S.E.L., Krumpen, T., Babb, D.G., Komarov, A.S., Heorton, H.D.B.S., Belter, H.J. and Aksenov, Y. (2022) ‘A year-round satellite sea-ice thickness record from CryoSat-2’, Nature, 609(7927), pp. 517–522.  https://doi.org/10.1038/s41586-022-05058-5

Langer, M., von Deimling, T.S., Westermann, S., Rolph, R., Rutte, R., Antonova, S., Rachold, V., Schultz, M., Oehme, A. and Grosse, G. (2023) ‘Thawing permafrost poses environmental threat to thousands of sites with legacy industrial contamination’, Nature Communications, 14(1), p. 1721.  https://doi.org/10.1038/s41467-023-37276-4

Lantuit, H., Overduin, P.P., Couture, N., Wetterich, S., Aré, F., Atkinson, D., Brown, J., Cherkashov, G., Drozdov, D., Forbes, D.L., Graves-Gaylord, A., Grigoriev, M., Hubberten, H.-W., Jordan, J., Jorgenson, T., Ødegård, R.S., Ogorodov, S., Pollard, W.H., Rachold, V., Sedenko, S., Solomon, S., Steenhuisen, F., Streletskaya, I. and Vasiliev, A. (2012) ‘The Arctic Coastal Dynamics Database: A New Classification Scheme and Statistics on Arctic Permafrost Coastlines’, Estuaries and Coasts, 35(2), pp. 383–400.  https://doi.org/10.1007/s12237-010-9362-6

Larour, E., Seroussi, H., Adhikari, S., Ivins, E., Caron, L., Morlighem, M. and Schlegel, N. (2019) ‘Slowdown in Antarctic mass loss from solid Earth and sea-level feedbacks’, Science, 364(6444), p. eaav7908.  https://doi.org/10.1126/science.aav7908

Lavergne, T., Sørensen, A.M., Kern, S., Tonboe, R., Notz, D., Aaboe, S., Bell, L., Dybkjær, G., Eastwood, S., Gabarro, C., Heygster, G., Killie, M.A., Brandt Kreiner, M., Lavelle, J., Saldo, R., Sandven, S. and Pedersen, L.T. (2019) ‘Version 2 of the EUMETSAT OSI SAF and ESA CCI sea-ice concentration climate data records’, The Cryosphere, 13(1), pp. 49–78.  https://doi.org/10.5194/tc-13-49-2019

Lehner, F., Born, A., Raible, C.C. and Stocker, T.F. (2013) ‘Amplified Inception of European Little Ice Age by Sea Ice–Ocean–Atmosphere Feedbacks’, Journal of Climate, 26(19), pp. 7586–7602.  https://doi.org/10.1175/JCLI-D-12-00690.1

Lenaerts, J.T.M., Lhermitte, S., Drews, R., Ligtenberg, S.R.M., Berger, S., Helm, V., Smeets, C.J.P.P., Broeke, M.R. van den, van de Berg, W.J., van Meijgaard, E., Eijkelboom, M., Eisen, O. and Pattyn, F. (2017) ‘Meltwater produced by wind–albedo interaction stored in an East Antarctic ice shelf’, Nature Climate Change, 7(1), pp. 58–62.  https://doi.org/10.1038/nclimate3180

Lenton, T.M. (2012) ‘Arctic Climate Tipping Points’, AMBIO, 41(1), pp. 10–22.  https://doi.org/10.1007/s13280-011-0221-x

Lenton, T.M., Held, H., Kriegler, E., Hall, J.W., Lucht, W., Rahmstorf, S. and Schellnhuber, H.J. (2008) ‘Tipping elements in the Earth’s climate system’, Proceedings of the National Academy of Sciences, 105(6), pp. 1786–1793.  https://doi.org/10.1073/pnas.0705414105

Levermann, A. and Winkelmann, R. (2016) ‘A simple equation for the melt elevation feedback of ice sheets’, The Cryosphere, 10(4), pp. 1799–1807.  https://doi.org/10.5194/tc-10-1799-2016

Levy, R., Harwood, D., Florindo, F., Sangiorgi, F., Tripati, R., von Eynatten, H., Gasson, E., Kuhn, G., Tripati, A., DeConto, R., Fielding, C., Field, B., Golledge, N., McKay, R., Naish, T., Olney, M., Pollard, D., Schouten, S., Talarico, F., Warny, S., Willmott, V., Acton, G., Panter, K., Paulsen, T., Taviani, M., and SMS Science Team (2016) ‘Antarctic ice sheet sensitivity to atmospheric CO2 variations in the early to mid-Miocene’, Proceedings of the National Academy of Sciences, 113(13), pp. 3453–3458.  https://doi.org/10.1073/pnas.1516030113

Li, C., Notz, D., Tietsche, S. and Marotzke, J. (2013) ‘The Transient versus the Equilibrium Response of Sea Ice to Global Warming’, Journal of Climate, 26(15), pp. 5624–5636.  https://doi.org/10.1175/JCLI-D-12-00492.1

Li, X., Rignot, E., Mouginot, J. and Scheuchl, B. (2016) ‘Ice flow dynamics and mass loss of Totten Glacier, East Antarctica, from 1989 to 2015’, Geophysical Research Letters, 43(12), pp. 6366–6373.  https://doi.org/10.1002/2016GL069173

Linsbauer, A., Frey, H., Haeberli, W., Machguth, H., Azam, M.F. and Allen, S. (2016) ‘Modelling glacier-bed overdeepenings and possible future lakes for the glaciers in the Himalaya—Karakoram region’, Annals of Glaciology, 57(71), pp. 119–130.  https://doi.org/10.3189/2016AoG71A627

Liu, Z., Pagani, M., Zinniker, D., DeConto, R., Huber, M., Brinkhuis, H., Shah, S.R., Leckie, R.M. and Pearson, A. (2009) ‘Global Cooling During the Eocene-Oligocene Climate Transition’, Science, 323(5918), pp. 1187–1190.  https://doi.org/10.1126/science.1166368

Mahlstein, I. and Knutti, R. (2012) ‘September Arctic sea ice predicted to disappear near 2°C global warming above present’, Journal of Geophysical Research: Atmospheres, 117(D6).  https://doi.org/10.1029/2011JD016709

Maksym, T. (2019) ‘Arctic and Antarctic Sea Ice Change: Contrasts, Commonalities, and Causes’, Annual Review of Marine Science, 11(1), pp. 187–213.  https://doi.org/10.1146/annurev-marine-010816-060610

Malles, J.-H., Maussion, F., Ultee, L., Kochtitzky, W., Copland, L., Myers, P. and Marzeion, B. (2023) Simulating northern hemisphere glacier – ocean interactions using the Open Global Glacier Model and the Nucleus for European Modelling of the Ocean. EGU23-7295. Copernicus Meetings.  https://doi.org/10.5194/egusphere-egu23-7295

Marín-Moreno, H., Minshull, T.A., Westbrook, G.K., Sinha, B. and Sarkar, S. (2013) ‘The response of methane hydrate beneath the seabed offshore Svalbard to ocean warming during the next three centuries’, Geophysical Research Letters, 40(19), pp. 5159–5163.  https://doi.org/10.1002/grl.50985

Marzeion, B., Hock, R., Anderson, B., Bliss, A., Champollion, N., Fujita, K., Huss, M., Immerzeel, W.W., Kraaijenbrink, P., Malles, J.-H., Maussion, F., Radić, V., Rounce, D.R., Sakai, A., Shannon, S., van de Wal, R. and Zekollari, H. (2020) ‘Partitioning the Uncertainty of Ensemble Projections of Global Glacier Mass Change’, Earth’s Future, 8(7), p. e2019EF001470.  https://doi.org/10.1029/2019EF001470

Marzeion, B., Kaser, G., Maussion, F. and Champollion, N. (2018) ‘Limited influence of climate change mitigation on short-term glacier mass loss’, Nature Climate Change, 8(4), pp. 305–308.  https://doi.org/10.1038/s41558-018-0093-1

McGuire, A.D., Lawrence, D.M., Koven, C., Clein, J.S., Burke, E., Chen, G., Jafarov, E., MacDougall, A.H., Marchenko, S., Nicolsky, D., Peng, S., Rinke, A., Ciais, P., Gouttevin, I., Hayes, D.J., Ji, D., Krinner, G., Moore, J.C., Romanovsky, V., Schädel, C., Schaefer, K., Schuur, E.A.G. and Zhuang, Q. (2018) ‘Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change’, Proceedings of the National Academy of Sciences, 115(15), pp. 3882–3887.  https://doi.org/10.1073/pnas.1719903115

Medley, B. and Thomas, E.R. (2019) ‘Increased snowfall over the Antarctic Ice Sheet mitigated twentieth-century sea-level rise’, Nature Climate Change, 9(1), pp. 34–39.  https://doi.org/10.1038/s41558-018-0356-x

Mengel, M. and Levermann, A. (2014) ‘Ice plug prevents irreversible discharge from East Antarctica’, Nature Climate Change, 4(6), pp. 451–455.  https://doi.org/10.1038/nclimate2226

Meredith, M., Sommerkorn, M., Cassotta, S., Derksen, C., Ekaykin, A., Hollowed, A., Kofinas, G., Mackintosh, A., Melbourne-Thomas, J., Muelbert, M.M.C., Ottersen, G., Pritchard, H., and Schuur, E.A.G. (2019) ‘Chapter 3: Polar regions’, in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. Cambridge, UK and New York, NY, USA: Cambridge University Press, pp. 203–320.  https://www.ipcc.ch/srocc/chapter/chapter-3-2/ (Accessed: 23 October 2023)

Mernild, S.H., Lipscomb, W.H., Bahr, D.B., Radić, V. and Zemp, M. (2013) ‘Global glacier changes: a revised assessment of committed mass losses and sampling uncertainties’, The Cryosphere, 7(5), pp. 1565–1577.  https://doi.org/10.5194/tc-7-1565-2013

Miesner, F., Overduin, P.P., Grosse, G., Strauss, J., Langer, M., Westermann, S., Schneider von Deimling, T., Brovkin, V. and Arndt, S. (2023) ‘Subsea permafrost organic carbon stocks are large and of dominantly low reactivity’, Scientific Reports, 13(1), p. 9425.  https://doi.org/10.1038/s41598-023-36471-z

Miles, B.W.J., Jordan, J.R., Stokes, C.R., Jamieson, S.S.R., Gudmundsson, G.H. and Jenkins, A. (2021) ‘Recent acceleration of Denman Glacier (1972–2017), East Antarctica, driven by grounding line retreat and changes in ice tongue configuration’, The Cryosphere, 15(2), pp. 663–676.  https://doi.org/10.5194/tc-15-663-2021

Milillo, P., Rignot, E., Rizzoli, P., Scheuchl, B., Mouginot, J., Bueso-Bello, J.L., Prats-Iraola, P. and Dini, L. (2022) ‘Rapid glacier retreat rates observed in West Antarctica’, Nature Geoscience, 15(1), pp. 48–53.  https://doi.org/10.1038/s41561-021-00877-z

Miner, K.R., D’Andrilli, J., Mackelprang, R., Edwards, A., Malaska, M.J., Waldrop, M.P. and Miller, C.E. (2021) ‘Emergent biogeochemical risks from Arctic permafrost degradation’, Nature Climate Change, 11(10), pp. 809–819.  https://doi.org/10.1038/s41558-021-01162-y

Miner, K.R., Turetsky, M.R., Malina, E., Bartsch, A., Tamminen, J., McGuire, A.D., Fix, A., Sweeney, C., Elder, C.D. and Miller, C.E. (2022) ‘Permafrost carbon emissions in a changing Arctic’, Nature Reviews Earth & Environment, 3(1), pp. 55–67.  https://doi.org/10.1038/s43017-021-00230-3

Morlighem, M., Rignot, E., Binder, T., Blankenship, D., Drews, R., Eagles, G., Eisen, O., Ferraccioli, F., Forsberg, R., Fretwell, P., Goel, V., Greenbaum, J.S., Gudmundsson, H., Guo, J., Helm, V., Hofstede, C., Howat, I., Humbert, A., Jokat, W., Karlsson, N.B., Lee, W.S., Matsuoka, K., Millan, R., Mouginot, J., Paden, J., Pattyn, F., Roberts, J., Rosier, S., Ruppel, A., Seroussi, H., Smith, E.C., Steinhage, D., Sun, B., Broeke, M.R.V.D., Ommen, T.D.V., Wessem, M.V. and Young, D.A. (2020) ‘Deep glacial troughs and stabilizing ridges unveiled beneath the margins of the Antarctic ice sheet’, Nature Geoscience, 13(2), pp. 132–137.  https://doi.org/10.1038/s41561-019-0510-8

Morlighem, M., Williams, C.N., Rignot, E., An, L., Arndt, J.E., Bamber, J.L., Catania, G., Chauché, N., Dowdeswell, J.A., Dorschel, B., Fenty, I., Hogan, K., Howat, I., Hubbard, A., Jakobsson, M., Jordan, T.M., Kjeldsen, K.K., Millan, R., Mayer, L., Mouginot, J., Noël, B.P.Y., O’Cofaigh, C., Palmer, S., Rysgaard, S., Seroussi, H., Siegert, M.J., Slabon, P., Straneo, F., van den Broeke, M.R., Weinrebe, W., Wood, M. and Zinglersen, K.B. (2017) ‘BedMachine v3: Complete Bed Topography and Ocean Bathymetry Mapping of Greenland From Multibeam Echo Sounding Combined With Mass Conservation’, Geophysical Research Letters, 44(21), p. 11,051-11,061.  https://doi.org/10.1002/2017GL074954

Muilwijk, M., Nummelin, A., Heuzé, C., Polyakov, I.V., Zanowski, H. and Smedsrud, L.H. (2023) ‘Divergence in Climate Model Projections of Future Arctic Atlantification’, Journal of Climate, 36(6), pp. 1727–1748.  https://doi.org/10.1175/JCLI-D-22-0349.1

Naegeli, K. and Huss, M. (2017) ‘Sensitivity of mountain glacier mass balance to changes in bare-ice albedo’, Annals of Glaciology, 58(75pt2), pp. 119–129.  https://doi.org/10.1017/aog.2017.25

Naish, T., Powell, R., Levy, R., Wilson, G., Scherer, R., Talarico, F., Krissek, L., Niessen, F., Pompilio, M., Wilson, T., Carter, L., DeConto, R., Huybers, P., McKay, R., Pollard, D., Ross, J., Winter, D., Barrett, P., Browne, G., Cody, R., Cowan, E., Crampton, J., Dunbar, G., Dunbar, N., Florindo, F., Gebhardt, C., Graham, I., Hannah, M., Hansaraj, D., Harwood, D., Helling, D., Henrys, S., Hinnov, L., Kuhn, G., Kyle, P., Läufer, A., Maffioli, P., Magens, D., Mandernack, K., McIntosh, W., Millan, C., Morin, R., Ohneiser, C., Paulsen, T., Persico, D., Raine, I., Reed, J., Riesselman, C., Sagnotti, L., Schmitt, D., Sjunneskog, C., Strong, P., Taviani, M., Vogel, S., Wilch, T. and Williams, T. (2009) ‘Obliquity-paced Pliocene West Antarctic ice sheet oscillations’, Nature, 458(7236), pp. 322–328.  https://doi.org/10.1038/nature07867

Natali, S.M., Holdren, J.P., Rogers, B.M., Treharne, R., Duffy, P.B., Pomerance, R. and MacDonald, E. (2021) ‘Permafrost carbon feedbacks threaten global climate goals’, Proceedings of the National Academy of Sciences, 118(21), p. e2100163118.  https://doi.org/10.1073/pnas.2100163118

Naughten, K.A., Holland, P.R. and De Rydt, J. (2023) ‘Unavoidable future increase in West Antarctic ice-shelf melting over the twenty-first century’, Nature Climate Change, pp. 1–7.  https://doi.org/10.1038/s41558-023-01818-x

Needell, C. and Holschuh, N. (2023) ‘Evaluating the Retreat, Arrest, and Regrowth of Crane Glacier Against Marine Ice Cliff Process Models’, Geophysical Research Letters, 50(4), p. e2022GL102400.  https://doi.org/10.1029/2022GL102400

Nitzbon, J., Deimling, T.S. von, Aliyeva, M., Chadburn, S.E., Grosse, G., Laboor, S., Lee, H., Lohmann, G., Steinert, N., Stuenzi, S., Werner, M., Westermann, S. and Langer, M. (2023) ‘No respite from permafrost-thaw impacts in absence of a global tipping point’ [Preprint].  https://eartharxiv.org/repository/view/5986/ (Accessed: 16 October 2023)

Nitzbon, J., Westermann, S., Langer, M., Martin, L.C.P., Strauss, J., Laboor, S. and Boike, J. (2020) ‘Fast response of cold ice-rich permafrost in northeast Siberia to a warming climate’, Nature Communications, 11(1), p. 2201.  https://doi.org/10.1038/s41467-020-15725-8

Noël, B., van Kampenhout, L., Lenaerts, J.T.M., van de Berg, W.J. and van den Broeke, M.R. (2021) ‘A 21st Century Warming Threshold for Sustained Greenland Ice Sheet Mass Loss’, Geophysical Research Letters, 48(5), p. e2020GL090471.  https://doi.org/10.1029/2020GL090471

Notz, D. (2009) ‘The future of ice sheets and sea ice: Between reversible retreat and unstoppable loss’, Proceedings of the National Academy of Sciences, 106(49), pp. 20590–20595.  https://doi.org/10.1073/pnas.0902356106

Notz, D. and Bitz, C.M. (2017) ‘Sea ice in Earth system models’, in Sea Ice. John Wiley & Sons, Ltd, pp. 304–325.  https://doi.org/10.1002/9781118778371.ch12

Notz, D. and Community, S. (2020) ‘Arctic Sea Ice in CMIP6’, Geophysical Research Letters, 47(10), p. e2019GL086749.  https://doi.org/10.1029/2019GL086749

Notz, D. and Stroeve, J. (2016) ‘Observed Arctic sea-ice loss directly follows anthropogenic CO2 emission’, Science, 354(6313), pp. 747–750.  https://doi.org/10.1126/science.aag2345

Obu, J. (2021) ‘How Much of the Earth’s Surface is Underlain by Permafrost?’, Journal of Geophysical Research: Earth Surface, 126(5), p. e2021JF006123.  https://doi.org/10.1029/2021JF006123

O’Connor, F.M., Boucher, O., Gedney, N., Jones, C.D., Folberth, G.A., Coppell, R., Friedlingstein, P., Collins, W.J., Chappellaz, J., Ridley, J. and Johnson, C.E. (2010) ‘Possible role of wetlands, permafrost, and methane hydrates in the methane cycle under future climate change: A review’, Reviews of Geophysics, 48(4).  https://doi.org/10.1029/2010RG000326

Oerlemans, J. (1981) ‘Some basic experiments with a vertically-integrated ice sheet model’, Tellus, 33(1), pp. 1–11.  https://doi.org/10.3402/tellusa.v33i1.10690

Olefeldt, D., Goswami, S., Grosse, G., Hayes, D., Hugelius, G., Kuhry, P., McGuire, A.D., Romanovsky, V.E., Sannel, A.B.K., Schuur, E. a. G. and Turetsky, M.R. (2016) ‘Circumpolar distribution and carbon storage of thermokarst landscapes’, Nature Communications, 7(1), p. 13043.  https://doi.org/10.1038/ncomms13043

Otosaka, I.N., Shepherd, A., Ivins, E.R., Schlegel, N.-J., Amory, C., van den Broeke, M.R., Horwath, M., Joughin, I., King, M.D., Krinner, G., Nowicki, S., Payne, A.J., Rignot, E., Scambos, T., Simon, K.M., Smith, B.E., Sørensen, L.S., Velicogna, I., Whitehouse, P.L., A, G., Agosta, C., Ahlstrøm, A.P., Blazquez, A., Colgan, W., Engdahl, M.E., Fettweis, X., Forsberg, R., Gallée, H., Gardner, A., Gilbert, L., Gourmelen, N., Groh, A., Gunter, B.C., Harig, C., Helm, V., Khan, S.A., Kittel, C., Konrad, H., Langen, P.L., Lecavalier, B.S., Liang, C.-C., Loomis, B.D., McMillan, M., Melini, D., Mernild, S.H., Mottram, R., Mouginot, J., Nilsson, J., Noël, B., Pattle, M.E., Peltier, W.R., Pie, N., Roca, M., Sasgen, I., Save, H.V., Seo, K.-W., Scheuchl, B., Schrama, E.J.O., Schröder, L., Simonsen, S.B., Slater, T., Spada, G., Sutterley, T.C., Vishwakarma, B.D., van Wessem, J.M., Wiese, D., van der Wal, W. and Wouters, B. (2023) ‘Mass balance of the Greenland and Antarctic ice sheets from 1992 to 2020’, Earth System Science Data, 15(4), pp. 1597–1616.  https://doi.org/10.5194/essd-15-1597-2023

Overduin, P.P., Schneider von Deimling, T., Miesner, F., Grigoriev, M.N., Ruppel, C., Vasiliev, A., Lantuit, H., Juhls, B. and Westermann, S. (2019) ‘Submarine Permafrost Map in the Arctic Modeled Using 1-D Transient Heat Flux (SuPerMAP)’, Journal of Geophysical Research: Oceans, 124(6), pp. 3490–3507.  https://doi.org/10.1029/2018JC014675

Paolo, F.S., Fricker, H.A. and Padman, L. (2015) ‘Volume loss from Antarctic ice shelves is accelerating’, Science, 348(6232), pp. 327–331.  https://doi.org/10.1126/science.aaa0940

Pattyn, F. and Morlighem, M. (2020) ‘The uncertain future of the Antarctic Ice Sheet’, Science, 367(6484), pp. 1331–1335.  https://doi.org/10.1126/science.aaz5487

Pegler, S.S. (2018) ‘Suppression of marine ice sheet instability’, Journal of Fluid Mechanics, 857, pp. 648–680.  https://doi.org/10.1017/jfm.2018.742

Pfeffer, W.T. (2007) ‘A simple mechanism for irreversible tidewater glacier retreat’, Journal of Geophysical Research: Earth Surface, 112(F3).  https://doi.org/10.1029/2006JF000590

Pihl, E., Alfredsson, E., Bengtsson, M., Bowen, K.J., Broto, V.C., Chou, K.T., Cleugh, H., Ebi, K., Edwards, C.M., Fisher, E., Friedlingstein, P., Godoy-Faúndez, A., Gupta, M., Harrington, A.R., Hayes, K., Hayward, B.M., Hebden, S.R., Hickmann, T., Hugelius, G., Ilyina, T., Jackson, R.B., Keenan, T.F., Lambino, R.A., Leuzinger, S., Malmaeus, M., McDonald, R.I., McMichael, C., Miller, C.A., Muratori, M., Nagabhatla, N., Nagendra, H., Passarello, C., Penuelas, J., Pongratz, J., Rockström, J., Romero-Lankao, P., Roy, J., Scaife, A.A., Schlosser, P., Schuur, E., Scobie, M., Sherwood, S.C., Sioen, G.B., Skovgaard, J., Obregon, E.A.S., Sonntag, S., Spangenberg, J.H., Spijkers, O., Srivastava, L., Stammer, D.B., Torres, P.H.C., Turetsky, M.R., Ukkola, A.M., Vuuren, D.P. van, Voigt, C., Wannous, C. and Zelinka, M.D. (2021) ‘Ten new insights in climate science 2020 – a horizon scan’, Global Sustainability, 4, p. e5.  https://doi.org/10.1017/sus.2021.2

Pollard, D. and DeConto, R.M. (2005) ‘Hysteresis in Cenozoic Antarctic ice-sheet variations’, Global and Planetary Change, 45(1), pp. 9–21.  https://doi.org/10.1016/j.gloplacha.2004.09.011

Pollard, D., DeConto, R.M. and Alley, R.B. (2015a) ‘Potential Antarctic Ice Sheet retreat driven by hydrofracturing and ice cliff failure’, Earth and Planetary Science Letters, 412, pp. 112–121.  https://doi.org/10.1016/j.epsl.2014.12.035

Pollard, D., DeConto, R.M. and Alley, R.B. (2015b) ‘Potential Antarctic Ice Sheet retreat driven by hydrofracturing and ice cliff failure’, Earth and Planetary Science Letters, 412, pp. 112–121.  https://doi.org/10.1016/j.epsl.2014.12.035

Pollard, D., DeConto, R.M. and Alley, R.B. (2018) ‘A continuum model (PSUMEL1) of ice mélange and its role during retreat of the Antarctic Ice Sheet’, Geoscientific Model Development, 11(12), pp. 5149–5172.  https://doi.org/10.5194/gmd-11-5149-2018

Purich, A. and Doddridge, E.W. (2023) ‘Record low Antarctic sea ice coverage indicates a new sea ice state’, Communications Earth & Environment, 4(1), pp. 1–9.  https://doi.org/10.1038/s43247-023-00961-9

Rantanen, M., Karpechko, A.Y., Lipponen, A., Nordling, K., Hyvärinen, O., Ruosteenoja, K., Vihma, T. and Laaksonen, A. (2022) ‘The Arctic has warmed nearly four times faster than the globe since 1979’, Communications Earth & Environment, 3(1), pp. 1–10.  https://doi.org/10.1038/s43247-022-00498-3

Reagan, M.T. and Moridis, G.J. (2007) ‘Oceanic gas hydrate instability and dissociation under climate change scenarios’, Geophysical Research Letters, 34(22).  https://doi.org/10.1029/2007GL031671

Reese, R., Garbe, J., Hill, E.A., Urruty, B., Naughten, K.A., Gagliardini, O., Durand, G., Gillet-Chaulet, F., Gudmundsson, G.H., Chandler, D., Langebroek, P.M. and Winkelmann, R. (2023) ‘The stability of present-day Antarctic grounding lines – Part 2: Onset of irreversible retreat of Amundsen Sea glaciers under current climate on centennial timescales cannot be excluded’, The Cryosphere, 17(9), pp. 3761–3783.  https://doi.org/10.5194/tc-17-3761-2023

Reese, R., Gudmundsson, G.H., Levermann, A. and Winkelmann, R. (2018) ‘The far reach of ice-shelf thinning in Antarctica’, Nature Climate Change, 8(1), pp. 53–57.  https://doi.org/10.1038/s41558-017-0020-x

Ridley, J., Gregory, J.M., Huybrechts, P. and Lowe, J. (2010) ‘Thresholds for irreversible decline of the Greenland ice sheet’, Climate Dynamics, 35(6), pp. 1049–1057.  https://doi.org/10.1007/s00382-009-0646-0

Ridley, J.K., Lowe, J.A. and Hewitt, H.T. (2012) ‘How reversible is sea ice loss?’, The Cryosphere, 6(1), pp. 193–198.  https://doi.org/10.5194/tc-6-193-2012

Rignot, E., Casassa, G., Gogineni, P., Krabill, W., Rivera, A. and Thomas, R. (2004) ‘Accelerated ice discharge from the Antarctic Peninsula following the collapse of Larsen B ice shelf’, Geophysical Research Letters, 31(18).  https://doi.org/10.1029/2004GL020697

Rignot, E., Mouginot, J., Morlighem, M., Seroussi, H. and Scheuchl, B. (2014) ‘Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith, and Kohler glaciers, West Antarctica, from 1992 to 2011’, Geophysical Research Letters, 41(10), pp. 3502–3509.  https://doi.org/10.1002/2014GL060140

Rignot, E., Mouginot, J., Scheuchl, B., van den Broeke, M., van Wessem, M.J. and Morlighem, M. (2019) ‘Four decades of Antarctic Ice Sheet mass balance from 1979–2017’, Proceedings of the National Academy of Sciences, 116(4), pp. 1095–1103.  https://doi.org/10.1073/pnas.1812883116

Rintoul, S.R., Silvano, A., Pena-Molino, B., van Wijk, E., Rosenberg, M., Greenbaum, J.S. and Blankenship, D.D. (2016) ‘Ocean heat drives rapid basal melt of the Totten Ice Shelf’, Science Advances, 2(12), p. e1601610.  https://doi.org/10.1126/sciadv.1601610

Ritchie, P.D.L., Clarke, J.J., Cox, P.M. and Huntingford, C. (2021) ‘Overshooting tipping point thresholds in a changing climate’, Nature, 592(7855), pp. 517–523.  https://doi.org/10.1038/s41586-021-03263-2

Robel, A.A. and Banwell, A.F. (2019) ‘A Speed Limit on Ice Shelf Collapse Through Hydrofracture’, Geophysical Research Letters, 46(21), pp. 12092–12100.  https://doi.org/10.1029/2019GL084397

Robinson, A., Calov, R. and Ganopolski, A. (2012) ‘Multistability and critical thresholds of the Greenland ice sheet’, Nature Climate Change, 2(6), pp. 429–432.  https://doi.org/10.1038/nclimate1449

Rounce, D.R., Hock, R., Maussion, F., Hugonnet, R., Kochtitzky, W., Huss, M., Berthier, E., Brinkerhoff, D., Compagno, L., Copland, L., Farinotti, D., Menounos, B. and McNabb, R.W. (2023) ‘Global glacier change in the 21st century: Every increase in temperature matters’, Science, 379(6627), pp. 78–83.  https://doi.org/10.1126/science.abo1324

Ruppel, C. (2015) ‘Permafrost-Associated Gas Hydrate: Is It Really Approximately 1 % of the Global System?’, Journal of Chemical & Engineering Data, 60(2), pp. 429–436.  https://doi.org/10.1021/je500770m

Ruppel, C.D. and Kessler, J.D. (2017) ‘The interaction of climate change and methane hydrates’, Reviews of Geophysics, 55(1), pp. 126–168.  https://doi.org/10.1002/2016RG000534

Sayedi, S.S., Abbott, B.W., Thornton, B.F., Frederick, J.M., Vonk, J.E., Overduin, P., Schädel, C., Schuur, E.A.G., Bourbonnais, A., Demidov, N., Gavrilov, A., He, S., Hugelius, G., Jakobsson, M., Jones, M.C., Joung, D., Kraev, G., Macdonald, R.W., McGuire, A.D., Mu, C., O’Regan, M., Schreiner, K.M., Stranne, C., Pizhankova, E., Vasiliev, A., Westermann, S., Zarnetske, J.P., Zhang, T., Ghandehari, M., Baeumler, S., Brown, B.C. and Frei, R.J. (2020) ‘Subsea permafrost carbon stocks and climate change sensitivity estimated by expert assessment’, Environmental Research Letters, 15(12), p. 124075.  https://doi.org/10.1088/1748-9326/abcc29

Scambos, T.A., Bohlander, J.A., Shuman, C.A. and Skvarca, P. (2004) ‘Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica’, Geophysical Research Letters, 31(18).  https://doi.org/10.1029/2004GL020670

Schaefer, K., Lantuit, H., Romanovsky, V.E., Schuur, E.A.G. and Witt, R. (2014) ‘The impact of the permafrost carbon feedback on global climate’, Environmental Research Letters, 9(8), p. 085003.  https://doi.org/10.1088/1748-9326/9/8/085003

Schellnhuber, H.J., Rahmstorf, S. and Winkelmann, R. (2016) ‘Why the right climate target was agreed in Paris’, Nature Climate Change, 6(7), pp. 649–653.  https://doi.org/10.1038/nclimate3013

Schlemm, T., Feldmann, J., Winkelmann, R. and Levermann, A. (2022) ‘Stabilizing effect of mélange buttressing on the marine ice-cliff instability of the West Antarctic Ice Sheet’, The Cryosphere, 16(5), pp. 1979–1996.  https://doi.org/10.5194/tc-16-1979-2022

Schoof, C. (2007) ‘Ice sheet grounding line dynamics: Steady states, stability, and hysteresis’, Journal of Geophysical Research: Earth Surface, 112(F3).  https://doi.org/10.1029/2006JF000664

Schröder, L., Horwath, M., Dietrich, R., Helm, V., van den Broeke, M.R. and Ligtenberg, S.R.M. (2019) ‘Four decades of Antarctic surface elevation changes from multi-mission satellite altimetry’, The Cryosphere, 13(2), pp. 427–449.  https://doi.org/10.5194/tc-13-427-2019

Schuur, E. a. G., McGuire, A.D., Schädel, C., Grosse, G., Harden, J.W., Hayes, D.J., Hugelius, G., Koven, C.D., Kuhry, P., Lawrence, D.M., Natali, S.M., Olefeldt, D., Romanovsky, V.E., Schaefer, K., Turetsky, M.R., Treat, C.C. and Vonk, J.E. (2015) ‘Climate change and the permafrost carbon feedback’, Nature, 520(7546), pp. 171–179.  https://doi.org/10.1038/nature14338

Schuur, E.A.G., Abbott, B.W., Commane, R., Ernakovich, J., Euskirchen, E., Hugelius, G., Grosse, G., Jones, M., Koven, C., Leshyk, V., Lawrence, D., Loranty, M.M., Mauritz, M., Olefeldt, D., Natali, S., Rodenhizer, H., Salmon, V., Schädel, C., Strauss, J., Treat, C. and Turetsky, M. (2022) ‘Permafrost and Climate Change: Carbon Cycle Feedbacks From the Warming Arctic’, Annual Review of Environment and Resources, 47(1), pp. 343–371.  https://doi.org/10.1146/annurev-environ-012220-011847

Schwinger, J., Asaadi, A., Goris, N. and Lee, H. (2022) ‘Possibility for strong northern hemisphere high-latitude cooling under negative emissions’, Nature Communications, 13(1), p. 1095.  https://doi.org/10.1038/s41467-022-28573-5

Seroussi, H., Nakayama, Y., Larour, E., Menemenlis, D., Morlighem, M., Rignot, E. and Khazendar, A. (2017) ‘Continued retreat of Thwaites Glacier, West Antarctica, controlled by bed topography and ocean circulation’, Geophysical Research Letters, 44(12), pp. 6191–6199.  https://doi.org/10.1002/2017GL072910

Shakun, J.D., Corbett, L.B., Bierman, P.R., Underwood, K., Rizzo, D.M., Zimmerman, S.R., Caffee, M.W., Naish, T., Golledge, N.R. and Hay, C.C. (2018) ‘Minimal East Antarctic Ice Sheet retreat onto land during the past eight million years’, Nature, 558(7709), pp. 284–287.  https://doi.org/10.1038/s41586-018-0155-6

Shen, Q., Wang, H., Shum, C.K., Jiang, L., Hsu, H.T. and Dong, J. (2018) ‘Recent high-resolution Antarctic ice velocity maps reveal increased mass loss in Wilkes Land, East Antarctica’, Scientific Reports, 8(1), p. 4477.  https://doi.org/10.1038/s41598-018-22765-0

Shepherd, A., Gilbert, L., Muir, A.S., Konrad, H., McMillan, M., Slater, T., Briggs, K.H., Sundal, A.V., Hogg, A.E. and Engdahl, M.E. (2019) ‘Trends in Antarctic Ice Sheet Elevation and Mass’, Geophysical Research Letters, 46(14), pp. 8174–8183.  https://doi.org/10.1029/2019GL082182

Shepherd, A., Ivins, E., Rignot, E., Smith, B., Broeke, M. van den, Velicogna, I., Whitehouse, P., Briggs, K., Joughin, I., Krinner, G., Nowicki, S., Payne, T., Scambos, T., Schlegel, N., A, G., Agosta, C., Ahlstrøm, A., Babonis, G., Barletta, V.R., Bjørk, A.A., Blazquez, A., Bonin, J., Colgan, W., Csatho, B., Cullather, R., Engdahl, M.E., Felikson, D., Fettweis, X., Forsberg, R., Hogg, A.E., Gallee, H., Gardner, A., Gilbert, L., Gourmelen, N., Groh, A., Gunter, B., Hanna, E., Harig, C., Helm, V., Horvath, A., Horwath, M., Khan, S., Kjeldsen, K.K., Konrad, H., Langen, P.L., Lecavalier, B., Loomis, B., Luthcke, S., McMillan, M., Melini, D., Mernild, S., Mohajerani, Y., Moore, P., Mottram, R., Mouginot, J., Moyano, G., Muir, A., Nagler, T., Nield, G., Nilsson, J., Noël, B., Otosaka, I., Pattle, M.E., Peltier, W.R., Pie, N., Rietbroek, R., Rott, H., Sørensen, L.S., Sasgen, I., Save, H., Scheuchl, B., Schrama, E., Schröder, L., Seo, K.W., Simonsen, S.B., Slater, T., Spada, G., Sutterley, T., Talpe, M., Tarasov, L., Berg, W.J. van de, Wal, W. van der, Wessem, M. van, Vishwakarma, B.D., Wiese, D., Wilton, D., Wagner, T., Wouters, B. and Wuite, J. (2020) ‘Mass balance of the Greenland Ice Sheet from 1992 to 2018’, Nature, 579(7798), pp. 233–239.  https://doi.org/10.1038/s41586-019-1855-2

Smedsrud, L.H., Muilwijk, M., Brakstad, A., Madonna, E., Lauvset, S.K., Spensberger, C., Born, A., Eldevik, T., Drange, H., Jeansson, E., Li, C., Olsen, A., Skagseth, Ø., Slater, D.A., Straneo, F., Våge, K. and Årthun, M. (2022) ‘Nordic Seas Heat Loss, Atlantic Inflow, and Arctic Sea Ice Cover Over the Last Century’, Reviews of Geophysics, 60(1), p. e2020RG000725.  https://doi.org/10.1029/2020RG000725

Smith, D.M., Eade, R., Andrews, M.B., Ayres, H., Clark, A., Chripko, S., Deser, C., Dunstone, N.J., García-Serrano, J., Gastineau, G., Graff, L.S., Hardiman, S.C., He, B., Hermanson, L., Jung, T., Knight, J., Levine, X., Magnusdottir, G., Manzini, E., Matei, D., Mori, M., Msadek, R., Ortega, P., Peings, Y., Scaife, A.A., Screen, J.A., Seabrook, M., Semmler, T., Sigmond, M., Streffing, J., Sun, L. and Walsh, A. (2022) ‘Robust but weak winter atmospheric circulation response to future Arctic sea ice loss’, Nature Communications, 13(1), p. 727.  https://doi.org/10.1038/s41467-022-28283-y

Steffen, W., Rockström, J., Richardson, K., Lenton, T.M., Folke, C., Liverman, D., Summerhayes, C.P., Barnosky, A.D., Cornell, S.E., Crucifix, M., Donges, J.F., Fetzer, I., Lade, S.J., Scheffer, M., Winkelmann, R. and Schellnhuber, H.J. (2018) ‘Trajectories of the Earth System in the Anthropocene’, Proceedings of the National Academy of Sciences, 115(33), pp. 8252–8259.  https://doi.org/10.1073/pnas.1810141115

Stokes, C.R., Sanderson, J.E., Miles, B.W.J., Jamieson, S.S.R. and Leeson, A.A. (2019) ‘Widespread distribution of supraglacial lakes around the margin of the East Antarctic Ice Sheet’, Scientific Reports, 9(1), p. 13823.  https://doi.org/10.1038/s41598-019-50343-5

Strozzi, T., Paul, F., Wiesmann, A., Schellenberger, T. and Kääb, A. (2017) ‘Circum-Arctic Changes in the Flow of Glaciers and Ice Caps from Satellite SAR Data between the 1990s and 2017’, Remote Sensing, 9(9), p. 947.  https://doi.org/10.3390/rs9090947

Sutter, J., Eisen, O., Werner, M., Grosfeld, K., Kleiner, T. and Fischer, H. (2020) ‘Limited Retreat of the Wilkes Basin Ice Sheet During the Last Interglacial’, Geophysical Research Letters, 47(13), p. e2020GL088131.  https://doi.org/10.1029/2020GL088131

Sutter, J., Gierz, P., Grosfeld, K., Thoma, M. and Lohmann, G. (2016) ‘Ocean temperature thresholds for Last Interglacial West Antarctic Ice Sheet collapse’, Geophysical Research Letters, 43(6), pp. 2675–2682.  https://doi.org/10.1002/2016GL067818

Tebaldi, C., Debeire, K., Eyring, V., Fischer, E., Fyfe, J., Friedlingstein, P., Knutti, R., Lowe, J., O’Neill, B., Sanderson, B., van Vuuren, D., Riahi, K., Meinshausen, M., Nicholls, Z., Tokarska, K.B., Hurtt, G., Kriegler, E., Lamarque, J.-F., Meehl, G., Moss, R., Bauer, S.E., Boucher, O., Brovkin, V., Byun, Y.-H., Dix, M., Gualdi, S., Guo, H., John, J.G., Kharin, S., Kim, Y., Koshiro, T., Ma, L., Olivié, D., Panickal, S., Qiao, F., Rong, X., Rosenbloom, N., Schupfner, M., Séférian, R., Sellar, A., Semmler, T., Shi, X., Song, Z., Steger, C., Stouffer, R., Swart, N., Tachiiri, K., Tang, Q., Tatebe, H., Voldoire, A., Volodin, E., Wyser, K., Xin, X., Yang, S., Yu, Y. and Ziehn, T. (2021) ‘Climate model projections from the Scenario Model Intercomparison Project (ScenarioMIP) of CMIP6’, Earth System Dynamics, 12(1), pp. 253–293.  https://doi.org/10.5194/esd-12-253-2021

The IMBIE Team, Shepherd, A., Velicogna, I., Ivins, E., Rignot, E., Smith, B., van den Broeke, M., Scambos, T., Whitehouse, P., Briggs, K., Joughin, I., Krinner, G., Nowicki, S., Payne, T., Ahlstrøm, A., Schlegel, N., A, G., Agosta, C., Felikson, D., Babonis, G., Barletta, V., Blazquez, A., Bonin, J., Csatho, B., Cullather, R., The IMBIE team, Fettweis, X., Forsberg, R., Gallee, H., Gardner, A., Gilbert, L., Groh, A., Gunter, B., Hanna, E., Harig, C., Helm, V., Horvath, A., Horwath, M., Khan, S., Kjeldsen, K.K., Konrad, H., Langen, P., Lecavalier, B., Loomis, B., Luthcke, S., McMillan, M., Melini, D., Mernild, S., Mohajerani, Y., Moore, P., Mouginot, J., Moyano, G., Muir, A., Nagler, T., Nield, G., Nilsson, J., Noel, B., Otosaka, I., Pattle, M.E., Peltier, W.R., Pie, N., Rietbroek, R., Rott, H., Sandberg-Sørensen, L., Sasgen, I., Save, H., Scheuchl, B., Schrama, E., Schröder, L., Seo, K.-W., Simonsen, S., Slater, T., Spada, G., Sutterley, T., Talpe, M., Tarasov, L., van de Berg, W.J., van der Wal, W., van Wessem, M., Vishwakarma, B.D., Wiese, D. and Wouters, B. (2018) ‘Mass balance of the Antarctic Ice Sheet from 1992 to 2017’, Nature, 558(7709), pp. 219–222.  https://doi.org/10.1038/s41586-018-0179-y

Thomas, Z.A., Jones, R.T., Turney, C.S.M., Golledge, N., Fogwill, C., Bradshaw, C.J.A., Menviel, L., McKay, N.P., Bird, M., Palmer, J., Kershaw, P., Wilmshurst, J. and Muscheler, R. (2020) ‘Tipping elements and amplified polar warming during the Last Interglacial’, Quaternary Science Reviews, 233, p. 106222.  https://doi.org/10.1016/j.quascirev.2020.106222

Tietsche, S., Notz, D., Jungclaus, J.H. and Marotzke, J. (2011) ‘Recovery mechanisms of Arctic summer sea ice’, Geophysical Research Letters, 38(2).  https://doi.org/10.1029/2010GL045698

Truffer, M., Kääb, A., Harrison, W.D., Osipova, G.B., Nosenko, G.A., Espizua, L., Gilbert, A., Fischer, L., Huggel, C., Craw Burns, P.A. and Lai, A.W. (2021) ‘Chapter 13 – Glacier surges’, in W. Haeberli and C. Whiteman (eds) Snow and Ice-Related Hazards, Risks, and Disasters (Second Edition). Elsevier (Hazards and Disasters Series), pp. 417–466.  https://doi.org/10.1016/B978-0-12-817129-5.00003-2

Trusel, L.D., Frey, K.E., Das, S.B., Munneke, P.K. and van den Broeke, M.R. (2013) ‘Satellite-based estimates of Antarctic surface meltwater fluxes’, Geophysical Research Letters, 40(23), pp. 6148–6153.  https://doi.org/10.1002/2013GL058138

Turetsky, M.R., Abbott, B.W., Jones, M.C., Anthony, K.W., Olefeldt, D., Schuur, E.A.G., Grosse, G., Kuhry, P., Hugelius, G., Koven, C., Lawrence, D.M., Gibson, C., Sannel, A.B.K. and McGuire, A.D. (2020) ‘Carbon release through abrupt permafrost thaw’, Nature Geoscience, 13(2), pp. 138–143.  https://doi.org/10.1038/s41561-019-0526-0

Turner, J., Orr, A., Gudmundsson, G.H., Jenkins, A., Bingham, R.G., Hillenbrand, C.-D. and Bracegirdle, T.J. (2017) ‘Atmosphere-ocean-ice interactions in the Amundsen Sea Embayment, West Antarctica’, Reviews of Geophysics, 55(1), pp. 235–276.  https://doi.org/10.1002/2016RG000532

Turney, C.S.M., Fogwill, C.J., Golledge, N.R., McKay, N.P., van Sebille, E., Jones, R.T., Etheridge, D., Rubino, M., Thornton, D.P., Davies, S.M., Ramsey, C.B., Thomas, Z.A., Bird, M.I., Munksgaard, N.C., Kohno, M., Woodward, J., Winter, K., Weyrich, L.S., Rootes, C.M., Millman, H., Albert, P.G., Rivera, A., van Ommen, T., Curran, M., Moy, A., Rahmstorf, S., Kawamura, K., Hillenbrand, C.-D., Weber, M.E., Manning, C.J., Young, J. and Cooper, A. (2020) ‘Early Last Interglacial ocean warming drove substantial ice mass loss from Antarctica’, Proceedings of the National Academy of Sciences, 117(8), pp. 3996–4006.  https://doi.org/10.1073/pnas.1902469117

Van Breedam, J., Goelzer, H. and Huybrechts, P. (2020) ‘Semi-equilibrated global sea-level change projections for the next 10 000 years’, Earth System Dynamics, 11(4), pp. 953–976.  https://doi.org/10.5194/esd-11-953-2020

de Vrese, P. and Brovkin, V. (2021) ‘Timescales of the permafrost carbon cycle and legacy effects of temperature overshoot scenarios’, Nature Communications, 12(1), p. 2688.  https://doi.org/10.1038/s41467-021-23010-5

de Vrese, P., Stacke, T., Kleinen, T. and Brovkin, V. (2021) ‘Diverging responses of high-latitude CO2 and CH4 emissions in idealized climate change scenarios’, The Cryosphere, 15(2), pp. 1097–1130.  https://doi.org/10.5194/tc-15-1097-2021

Wagner, T.J.W. and Eisenman, I. (2015) ‘How Climate Model Complexity Influences Sea Ice Stability’, Journal of Climate, 28(10), pp. 3998–4014.  https://doi.org/10.1175/JCLI-D-14-00654.1

Walter Anthony, K., Daanen, R., Anthony, P., Schneider von Deimling, T., Ping, C.-L., Chanton, J.P. and Grosse, G. (2016) ‘Methane emissions proportional to permafrost carbon thawed in Arctic lakes since the 1950s’, Nature Geoscience, 9(9), pp. 679–682.  https://doi.org/10.1038/ngeo2795

Walter Anthony, K., Schneider von Deimling, T., Nitze, I., Frolking, S., Emond, A., Daanen, R., Anthony, P., Lindgren, P., Jones, B. and Grosse, G. (2018) ‘21st-century modeled permafrost carbon emissions accelerated by abrupt thaw beneath lakes’, Nature Communications, 9(1), p. 3262.  https://doi.org/10.1038/s41467-018-05738-9

Wang, Seaver, Foster, A., Lenz, E.A., Kessler, J.D., Stroeve, J.C., Anderson, L.O., Turetsky, M., Betts, R., Zou, S., Liu, W., Boos, W.R. and Hausfather, Z. (2023) ‘Mechanisms and Impacts of Earth System Tipping Elements’, Reviews of Geophysics, 61(1), p. e2021RG000757.  https://doi.org/10.1029/2021RG000757

Wang, Shaoyin, Liu, J., Cheng, X., Yang, D., Kerzenmacher, T., Li, X., Hu, Y. and Braesicke, P. (2023) ‘Contribution of the deepened Amundsen sea low to the record low Antarctic sea ice extent in February 2022’, Environmental Research Letters, 18(5), p. 054002.  https://doi.org/10.1088/1748-9326/acc9d6

Weber, M.E., Golledge, N.R., Fogwill, C.J., Turney, C.S.M. and Thomas, Z.A. (2021) ‘Decadal-scale onset and termination of Antarctic ice-mass loss during the last deglaciation’, Nature Communications, 12(1), p. 6683.  https://doi.org/10.1038/s41467-021-27053-6

Weertman, J. (1974) ‘Stability of the Junction of an Ice Sheet and an Ice Shelf’, Journal of Glaciology, 13(67), pp. 3–11.  https://doi.org/10.3189/S0022143000023327

Whitehouse, P.L., Gomez, N., King, M.A. and Wiens, D.A. (2019) ‘Solid Earth change and the evolution of the Antarctic Ice Sheet’, Nature Communications, 10(1), p. 503.  https://doi.org/10.1038/s41467-018-08068-y

Wilkenskjeld, S., Miesner, F., Overduin, P.P., Puglini, M. and Brovkin, V. (2022) ‘Strong increase in thawing of subsea permafrost in the 22nd century caused by anthropogenic climate change’, The Cryosphere, 16(3), pp. 1057–1069.  https://doi.org/10.5194/tc-16-1057-2022

Wilson, D.J., Bertram, R.A., Needham, E.F., van de Flierdt, T., Welsh, K.J., McKay, R.M., Mazumder, A., Riesselman, C.R., Jimenez-Espejo, F.J. and Escutia, C. (2018) ‘Ice loss from the East Antarctic Ice Sheet during late Pleistocene interglacials’, Nature, 561(7723), pp. 383–386.  https://doi.org/10.1038/s41586-018-0501-8

Winkelmann, R., Levermann, A., Ridgwell, A. and Caldeira, K. (2015) ‘Combustion of available fossil fuel resources sufficient to eliminate the Antarctic Ice Sheet’, Science Advances, 1(8), p. e1500589.  https://doi.org/10.1126/sciadv.1500589

Winton, M. (2006) ‘Does the Arctic sea ice have a tipping point?’, Geophysical Research Letters, 33(23).  https://doi.org/10.1029/2006GL028017

Winton, M. (2008) ‘Sea Ice–Albedo Feedback and Nonlinear Arctic Climate Change’, in Arctic Sea Ice Decline: Observations, Projections, Mechanisms, and Implications. American Geophysical Union (AGU), pp. 111–131.  https://doi.org/10.1029/180GM09

Winton, M. (2011) ‘Do Climate Models Underestimate the Sensitivity of Northern Hemisphere Sea Ice Cover?’, Journal of Climate, 24(15), pp. 3924–3934.  https://doi.org/10.1175/2011JCLI4146.1

Wunderling, N., Donges, J.F., Kurths, J. and Winkelmann, R. (2021) ‘Interacting tipping elements increase risk of climate domino effects under global warming’, Earth System Dynamics, 12(2), pp. 601–619.  https://doi.org/10.5194/esd-12-601-2021

Wunderling, N., von der Heydt, A., Aksenov, Y., Barker, S., Bastiaansen, R., Brovkin, V., Brunetti, M., Couplet, V., Kleinen, T., Lear, C.H., Lohmann, J., Roman-Cuesta, R.M., Sinet, S., Swingedouw, D., Winkelmann, R., Anand, P., Barichivich, J., Bathiany, S., Baudena, M., Bruun, J.T., Chiessi, C.M., Coxall, H.K., Docquier, D., Donges, J.F., Falkena, S.K.J., Klose, A.K., Obura, D., Rocha, J., Rynders, S., Steinert, N.J. and Willeit, M. (2023) ‘Climate tipping point interactions and cascades: A review’, EGUsphere, pp. 1–45 [Preprint].  https://doi.org/10.5194/egusphere-2023-1576

Yumashev, D., Hope, C., Schaefer, K., Riemann-Campe, K., Iglesias-Suarez, F., Jafarov, E., Burke, E.J., Young, P.J., Elshorbany, Y. and Whiteman, G. (2019) ‘Climate policy implications of nonlinear decline of Arctic land permafrost and other cryosphere elements’, Nature Communications, 10(1), p. 1900.  https://doi.org/10.1038/s41467-019-09863-x

Zhang, C. and Li, S. (2023) ‘Causes of the record-low Antarctic sea-ice in austral summer 2022’, Atmospheric and Oceanic Science Letters, p. 100353.  https://doi.org/10.1016/j.aosl.2023.100353Zickfeld, K., Arora, V.K. and Gillett, N.P. (2012) ‘Is the climate response to CO2 emissions path dependent?’, Geophysical Research Letters, 39(5).  https://doi.org/10.1029/2011GL050205

Chapter 1.3

Abis, B. and Brovkin, V. (2017) ‘Environmental conditions for alternative tree-cover states in high latitudes’, Biogeosciences, 14(3), pp. 511–527.  https://doi.org/10.5194/bg-14-511-2017

Abrams, J.F., Huntingford, C., Williamson, M.S., Armstrong McKay, D.I., Boulton, C.A., Buxton, J., Sakschewski, B., Loriani, S., Zimm, C., Winkelmann, R. and Lenton, T.M. (Accepted) ‘Committed global warming risks triggering multiple climate tipping points’, Earth’s Future.  https://doi.org/10.1029/2022EF003250

Acácio, V., Holmgren, M., Rego, F., Moreira, F. and Mohren, G.M.J. (2009) ‘Are drought and wildfires turning Mediterranean cork oak forests into persistent shrublands?’, Agroforestry Systems, 76(2), pp. 389–400.  https://doi.org/10.1007/s10457-008-9165-y

Adame, M.F., Connolly, R.M., Turschwell, M.P., Lovelock, C.E., Fatoyinbo, T., Lagomasino, D., Goldberg, L.A., Holdorf, J., Friess, D.A., Sasmito, S.D., Sanderman, J., Sievers, M., Buelow, C., Kauffman, J.B., Bryan-Brown, D. and Brown, C.J. (2021) ‘Future carbon emissions from global mangrove forest loss’, Global Change Biology, 27(12), pp. 2856–2866.  https://doi.org/10.1111/gcb.15571

Adhikari, P.L., White, J.R., Maiti, K. and Nguyen, N. (2015) ‘Phosphorus speciation and sedimentary phosphorus release from the Gulf of Mexico sediments: Implication for hypoxia’, Estuarine, Coastal and Shelf Science, 164, pp. 77–85.  https://doi.org/10.1016/j.ecss.2015.07.016

Aguiar, M.R. and Sala, O.E. (1999) ‘Patch structure, dynamics and implications for the functioning of arid ecosystems’, Trends in Ecology & Evolution, 14(7), pp. 273–277.  https://doi.org/10.1016/S0169-5347(99)01612-2

Aleman, J.C., Fayolle, A., Favier, C., Staver, A.C., Dexter, K.G., Ryan, C.M., Azihou, A.F., Bauman, D., te Beest, M., Chidumayo, E.N., Comiskey, J.A., Cromsigt, J.P.G.M., Dessard, H., Doucet, J.-L., Finckh, M., Gillet, J.-F., Gourlet-Fleury, S., Hempson, G.P., Holdo, R.M., Kirunda, B., Kouame, F.N., Mahy, G., Gonçalves, F.M.P., McNicol, I., Quintano, P.N., Plumptre, A.J., Pritchard, R.C., Revermann, R., Schmitt, C.B., Swemmer, A.M., Talila, H., Woollen, E. and Swaine, M.D. (2020) ‘Floristic evidence for alternative biome states in tropical Africa’, Proceedings of the National Academy of Sciences, 117(45), pp. 28183–28190.  https://doi.org/10.1073/pnas.2011515117

Alheit, J. and Niquen, M. (2004) ‘Regime shifts in the Humboldt Current ecosystem’, Progress in Oceanography, 60(2), pp. 201–222.  https://doi.org/10.1016/j.pocean.2004.02.006

Allen, C.D., Macalady, A.K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., Kitzberger, T., Rigling, A., Breshears, D.D., Hogg, E.H. (Ted), Gonzalez, P., Fensham, R., Zhang, Z., Castro, J., Demidova, N., Lim, J.-H., Allard, G., Running, S.W., Semerci, A. and Cobb, N. (2010) ‘A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests’, Forest Ecology and Management, 259(4), pp. 660–684.  https://doi.org/10.1016/j.foreco.2009.09.001

Allen, K., Dupuy, J.M., Gei, M.G., Hulshof, C., Medvigy, D., Pizano, C., Salgado-Negret, B., Smith, C.M., Trierweiler, A., Bloem, S.J.V., Waring, B.G., Xu, X. and Powers, J.S. (2017) ‘Will seasonally dry tropical forests be sensitive or resistant to future changes in rainfall regimes?’, Environmental Research Letters, 12(2), p. 023001.  https://doi.org/10.1088/1748-9326/aa5968

Alongi, D.M., Murdiyarso, D., Fourqurean, J.W., Kauffman, J.B., Hutahaean, A., Crooks, S., Lovelock, C.E., Howard, J., Herr, D., Fortes, M., Pidgeon, E. and Wagey, T. (2016) ‘Indonesia’s blue carbon: a globally significant and vulnerable sink for seagrass and mangrove carbon’, Wetlands Ecology and Management, 24(1), pp. 3–13.  https://doi.org/10.1007/s11273-015-9446-y

Amaral, C., Poulter, B., Lagomasino, D., Fatoyinbo, T., Taillie, P., Lizcano, G., Canty, S., Silveira, J.A.H., Teutli-Hernández, C., Cifuentes-Jara, M., Charles, S.P., Moreno, C.S., González-Trujillo, J.D. and Roman-Cuesta, R.M. (2023) ‘Drivers of mangrove vulnerability and resilience to tropical cyclones in the North Atlantic Basin’, Science of The Total Environment, 898, p. 165413.  https://doi.org/10.1016/j.scitotenv.2023.165413

do Amaral Camara Lima, M., Bergamo, T.F., Ward, R.D. and Joyce, C.B. (2023) ‘A review of seagrass ecosystem services: providing nature-based solutions for a changing world’, Hydrobiologia, 850(12), pp. 2655–2670.  https://doi.org/10.1007/s10750-023-05244-0

Amir, H. (2022) Status and trends of hard coral cover derived from long-term monitoring sites in the Maldives: 1998-2021. Maldives Marine Research Institute.

Andersen, E.M. and Steidl, R.J. (2019) ‘Woody plant encroachment restructures bird communities in semiarid grasslands’, Biological Conservation, 240, p. 108276.  https://doi.org/10.1016/j.biocon.2019.108276

Andersen, T., Carstensen, J., Hernández-García, E. and Duarte, C.M. (2009) ‘Ecological thresholds and regime shifts: approaches to identification’, Trends in Ecology & Evolution, 24(1), pp. 49–57.  https://doi.org/10.1016/j.tree.2008.07.014

Anderson, N.J., Heathcote, A.J., Engstrom, D.R., and GLOBOCARB DATA CONTRIBUTORS (2020) ‘Anthropogenic alteration of nutrient supply increases the global freshwater carbon sink’, Science Advances, 6(16), p. eaaw2145.  https://doi.org/10.1126/sciadv.aaw2145

Anderson, T.R., Hessen, D.O., Gentleman, W.C., Yool, A. and Mayor, D.J. (2022) ‘Quantifying the roles of food intake and stored lipid for growth and development throughout the life cycle of a high-latitude copepod, and consequences for ocean carbon sequestration’, Frontiers in Marine Science, 9.  https://www.frontiersin.org/articles/10.3389/fmars.2022.928209 (Accessed: 20 October 2023)

Anoszko, E., Frelich, L.E., Rich, R.L. and Reich, P.B. (2022) ‘Wind and fire: Rapid shifts in tree community composition following multiple disturbances in the southern boreal forest’, Ecosphere, 13(3), p. e3952.  https://doi.org/10.1002/ecs2.3952

Archibald, S. and Hempson, G.P. (2016) ‘Competing consumers: contrasting the patterns and impacts of fire and mammalian herbivory in Africa’, Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1703), p. 20150309.  https://doi.org/10.1098/rstb.2015.0309

Archibald, S., Roy, D.P., Van WILGEN, B.W. and Scholes, R.J. (2009) ‘What limits fire? An examination of drivers of burnt area in Southern Africa’, Global Change Biology, 15(3), pp. 613–630.  https://doi.org/10.1111/j.1365-2486.2008.01754.x

Arias-Ortiz, A., Serrano, O., Masqué, P., Lavery, P.S., Mueller, U., Kendrick, G.A., Rozaimi, M., Esteban, A., Fourqurean, J.W., Marbà, N., Mateo, M.A., Murray, K., Rule, M.J. and Duarte, C.M. (2018) ‘A marine heatwave drives massive losses from the world’s largest seagrass carbon stocks’, Nature Climate Change, 8(4), pp. 338–344.  https://doi.org/10.1038/s41558-018-0096-y

Armstrong McKay, D.I., Cornell, S.E., Richardson, K. and Rockström, J. (2021) ‘Resolving ecological feedbacks on the ocean carbon sink in Earth system models’, Earth System Dynamics, 12(3), pp. 797–818.  https://doi.org/10.5194/esd-12-797-2021

Armstrong McKay, D.I., Staal, A., Abrams, J.F., Winkelmann, R., Sakschewski, B., Loriani, S., Fetzer, I., Cornell, S.E., Rockström, J. and Lenton, T.M. (2022) ‘Exceeding 1.5°C global warming could trigger multiple climate tipping points’, Science, 377(6611), p. eabn7950.  https://doi.org/10.1126/science.abn7950

Au, J., Bloom, A.A., Parazoo, N.C., Deans, R.M., Wong, C.Y.S., Houlton, B.Z. and Magney, T.S. (2023) ‘Forest productivity recovery or collapse? Model-data integration insights on drought-induced tipping points’, Global Change Biology, 29(19), pp. 5652–5665.  https://doi.org/10.1111/gcb.16867

Bailey, S.N., Elliott, G.P. and Schliep, E.M. (2021) ‘Seasonal temperature–moisture interactions limit seedling establishment at upper treeline in the Southern Rockies’, Ecosphere, 12(6), p. e03568.  https://doi.org/10.1002/ecs2.3568

Ban, S.S., Graham, N.A.J. and Connolly, S.R. (2014) ‘Evidence for multiple stressor interactions and effects on coral reefs’, Global Change Biology, 20(3), pp. 681–697.  https://doi.org/10.1111/gcb.12453

Ban, Z., Hu, X. and Li, J. (2022) ‘Tipping points of marine phytoplankton to multiple environmental stressors’, Nature Climate Change, 12(11), pp. 1045–1051.  https://doi.org/10.1038/s41558-022-01489-0

Barlow, J., França, F., Gardner, T.A., Hicks, C.C., Lennox, G.D., Berenguer, E., Castello, L., Economo, E.P., Ferreira, J., Guénard, B., Gontijo Leal, C., Isaac, V., Lees, A.C., Parr, C.L., Wilson, S.K., Young, P.J. and Graham, N.A.J. (2018) ‘The future of hyperdiverse tropical ecosystems’, Nature, 559(7715), pp. 517–526.  https://doi.org/10.1038/s41586-018-0301-1

Barnosky, A.D., Hadly, E.A., Bascompte, J., Berlow, E.L., Brown, J.H., Fortelius, M., Getz, W.M., Harte, J., Hastings, A., Marquet, P.A., Martinez, N.D., Mooers, A., Roopnarine, P., Vermeij, G., Williams, J.W., Gillespie, R., Kitzes, J., Marshall, C., Matzke, N., Mindell, D.P., Revilla, E. and Smith, A.B. (2012) ‘Approaching a state shift in Earth’s biosphere’, Nature, 486(7401), pp. 52–58.  https://doi.org/10.1038/nature11018

Barnosky, A.D., Matzke, N., Tomiya, S., Wogan, G.O.U., Swartz, B., Quental, T.B., Marshall, C., McGuire, J.L., Lindsey, E.L., Maguire, K.C., Mersey, B. and Ferrer, E.A. (2011) ‘Has the Earth’s sixth mass extinction already arrived?’, Nature, 471(7336), pp. 51–57.  https://doi.org/10.1038/nature09678

Barros, F. de V., Bittencourt, P.R.L., Brum, M., Restrepo-Coupe, N., Pereira, L., Teodoro, G.S., Saleska, S.R., Borma, L.S., Christoffersen, B.O., Penha, D., Alves, L.F., Lima, A.J.N., Carneiro, V.M.C., Gentine, P., Lee, J.-E., Aragão, L.E.O.C., Ivanov, V., Leal, L.S.M., Araujo, A.C. and Oliveira, R.S. (2019) ‘Hydraulic traits explain differential responses of Amazonian forests to the 2015 El Niño-induced drought’, New Phytologist, 223(3), pp. 1253–1266.  https://doi.org/10.1111/nph.15909

Bartenfelder, A., Kenworthy, W.J., Puckett, B., Deaton, C. and Jarvis, J.C. (2022) ‘The Abundance and Persistence of Temperate and Tropical Seagrasses at Their Edge-of-Range in the Western Atlantic Ocean’, Frontiers in Marine Science, 9.  https://www.frontiersin.org/articles/10.3389/fmars.2022.917237 (Accessed: 19 October 2023)

Bastiaansen, R., Dijkstra, H.A. and Heydt, A.S. von der (2022) ‘Fragmented tipping in a spatially heterogeneous world’, Environmental Research Letters, 17(4), p. 045006.  https://doi.org/10.1088/1748-9326/ac59a8

Bastin, J.-F., Finegold, Y., Garcia, C., Mollicone, D., Rezende, M., Routh, D., Zohner, C.M. and Crowther, T.W. (2019) ‘The global tree restoration potential’, Science, 365(6448), pp. 76–79.  https://doi.org/10.1126/science.aax0848.

Battaglia, G. and Joos, F. (2018) ‘Hazards of decreasing marine oxygen: the near-term and millennial-scale benefits of meeting the Paris climate targets’, Earth System Dynamics, 9(2), pp. 797–816.  https://doi.org/10.5194/esd-9-797-2018

Baudena, M., Santana, V.M., Baeza, M.J., Bautista, S., Eppinga, M.B., Hemerik, L., Garcia Mayor, A., Rodriguez, F., Valdecantos, A., Vallejo, V.R., Vasques, A. and Rietkerk, M. (2020) ‘Increased aridity drives post-fire recovery of Mediterranean forests towards open shrublands’, New Phytologist, 225(4), pp. 1500–1515.  https://doi.org/10.1111/nph.16252

Beaugrand, G. (2015) ‘Theoretical basis for predicting climate-induced abrupt shifts in the oceans’, Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1659), p. 20130264.  https://doi.org/10.1098/rstb.2013.0264

Beaugrand, G., Balembois, A., Kléparski, L. and Kirby, R.R. (2022) ‘Addressing the dichotomy of fishing and climate in fishery management with the FishClim model’, Communications Biology, 5(1), pp. 1–13.  https://doi.org/10.1038/s42003-022-04100-6

Beaugrand, G., Conversi, A., Atkinson, A., Cloern, J., Chiba, S., Fonda-Umani, S., Kirby, R.R., Greene, C.H., Goberville, E., Otto, S.A., Reid, P.C., Stemmann, L. and Edwards, M. (2019) ‘Prediction of unprecedented biological shifts in the global ocean’, Nature Climate Change, 9(3), pp. 237–243.  https://doi.org/10.1038/s41558-019-0420-1

Beaugrand, G., Conversi, A., Chiba, S., Edwards, M., Fonda-Umani, S., Greene, C., Mantua, N., Otto, S.A., Reid, P.C., Stachura, M.M., Stemmann, L. and Sugisaki, H. (2015) ‘Synchronous marine pelagic regime shifts in the Northern Hemisphere’, Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1659), p. 20130272.  https://doi.org/10.1098/rstb.2013.0272

Beckage, B., Ellingwood, C., and University of Vermont (2009) ‘Fire Feedbacks with Vegetation and Alternative Stable States’, Complex Systems, 18(1), pp. 159–173.  https://doi.org/10.25088/ComplexSystems.18.1.159

Beckett, H., Staver, A.C., Charles-Dominique, T. and Bond, W.J. (2022) ‘Pathways of savannization in a mesic African savanna–forest mosaic following an extreme fire’, Journal of Ecology, 110(4), pp. 902–915.  https://doi.org/10.1111/1365-2745.13851

Benyon, R.G., Inbar, A., Sheridan, G.J. and Lane, P.N.J. (2023) ‘Critical climate thresholds for fire in wet, temperate forests’, Forest Ecology and Management, 537, p. 120911.  https://doi.org/10.1016/j.foreco.2023.120911

Berdugo, M., Delgado-Baquerizo, M., Soliveres, S., Hernández-Clemente, R., Zhao, Y., Gaitán, J.J., Gross, N., Saiz, H., Maire, V., Lehmann, A., Rillig, M.C., Solé, R.V. and Maestre, F.T. (2020) ‘Global ecosystem thresholds driven by aridity’, Science, 367(6479), pp. 787–790.  https://doi.org/10.1126/science.aay5958

Berdugo, M., Gaitán, J.J., Delgado-Baquerizo, M., Crowther, T.W. and Dakos, V. (2022) ‘Prevalence and drivers of abrupt vegetation shifts in global drylands’, Proceedings of the National Academy of Sciences, 119(43), p. e2123393119.  https://doi.org/10.1073/pnas.2123393119

Berdugo, M., Kéfi, S., Soliveres, S. and Maestre, F.T. (2017) ‘Plant spatial patterns identify alternative ecosystem multifunctionality states in global drylands’, Nature Ecology & Evolution, 1(2), pp. 1–10.  https://doi.org/10.1038/s41559-016-0003

Berdugo, M., Soliveres, S., Kéfi, S. and Maestre, F.T. (2019) ‘The interplay between facilitation and habitat type drives spatial vegetation patterns in global drylands’, Ecography, 42(4), pp. 755–767.  https://doi.org/10.1111/ecog.03795

Berenguer, E., Lennox, G.D., Ferreira, J., Malhi, Y., Aragão, L.E.O.C., Barreto, J.R., Del Bon Espírito-Santo, F., Figueiredo, A.E.S., França, F., Gardner, T.A., Joly, C.A., Palmeira, A.F., Quesada, C.A., Rossi, L.C., de Seixas, M.M.M., Smith, C.C., Withey, K. and Barlow, J. (2021) ‘Tracking the impacts of El Niño drought and fire in human-modified Amazonian forests’, Proceedings of the National Academy of Sciences, 118(30), p. e2019377118.  https://doi.org/10.1073/pnas.2019377118

Bergstrom, D.M., Wienecke, B.C., van den Hoff, J., Hughes, L., Lindenmayer, D.B., Ainsworth, T.D., Baker, C.M., Bland, L., Bowman, D.M.J.S., Brooks, S.T., Canadell, J.G., Constable, A.J., Dafforn, K.A., Depledge, M.H., Dickson, C.R., Duke, N.C., Helmstedt, K.J., Holz, A., Johnson, C.R., McGeoch, M.A., Melbourne-Thomas, J., Morgain, R., Nicholson, E., Prober, S.M., Raymond, B., Ritchie, E.G., Robinson, S.A., Ruthrof, K.X., Setterfield, S.A., Sgrò, C.M., Stark, J.S., Travers, T., Trebilco, R., Ward, D.F.L., Wardle, G.M., Williams, K.J., Zylstra, P.J. and Shaw, J.D. (2021) ‘Combating ecosystem collapse from the tropics to the Antarctic’, Global Change Biology, 27(9), pp. 1692–1703.  https://doi.org/10.1111/gcb.15539

Bestelmeyer, B.T., Duniway, M.C., James, D.K., Burkett, L.M. and Havstad, K.M. (2013) ‘A test of critical thresholds and their indicators in a desertification-prone ecosystem: more resilience than we thought’, Ecology Letters, 16(3), pp. 339–345.  https://doi.org/10.1111/ele.12045

Bestelmeyer, B.T., Ellison, A.M., Fraser, W.R., Gorman, K.B., Holbrook, S.J., Laney, C.M., Ohman, M.D., Peters, D.P.C., Pillsbury, F.C., Rassweiler, A., Schmitt, R.J. and Sharma, S. (2011) ‘Analysis of abrupt transitions in ecological systems’, Ecosphere, 2(12), p. art129.  https://doi.org/10.1890/ES11-00216.1

Beyer, H.L., Kennedy, E.V., Beger, M., Chen, C.A., Cinner, J.E., Darling, E.S., Eakin, C.M., Gates, R.D., Heron, S.F., Knowlton, N., Obura, D.O., Palumbi, S.R., Possingham, H.P., Puotinen, M., Runting, R.K., Skirving, W.J., Spalding, M., Wilson, K.A., Wood, S., Veron, J.E. and Hoegh-Guldberg, O. (2018) ‘Risk-sensitive planning for conserving coral reefs under rapid climate change’, Conservation Letters, 11(6), p. e12587.  https://doi.org/10.1111/conl.12587

Bhargava, R. and Friess, D.A. (2022) ‘Previous Shoreline Dynamics Determine Future Susceptibility to Cyclone Impact in the Sundarban Mangrove Forest’, Frontiers in Marine Science, 9.  https://www.frontiersin.org/articles/10.3389/fmars.2022.814577 (Accessed: 19 October 2023)

Biggs, R., Carpenter, S.R. and Brock, W.A. (2009) ‘Turning back from the brink: Detecting an impending regime shift in time to avert it’, Proceedings of the National Academy of Sciences, 106(3), pp. 826–831.  https://doi.org/10.1073/pnas.0811729106

Bindoff, N.L., Cheung, W.W.L., Kairo, J.G., Aristegui, J., Guinder, V.A., Hallberg, R., Hilmi, N., Jiao, N., Karim, M.S., Levin, L., O’Donoghue, S., Purca Cuicapusa, S.R., Rinkevich, B., Suga, T., Tagliabue, A. and Williamson, P. (19AD) ‘Changing Ocean, Marine Ecosystems, and Dependent Communities’, in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. Cambridge: Cambridge University Press, pp. 447–588.  https://doi.org/10.1017/9781009157964.007

Bland, L.M., Rowland, J.A., Regan, T.J., Keith, D.A., Murray, N.J., Lester, R.E., Linn, M., Rodríguez, J.P. and Nicholson, E. (2018) ‘Developing a standardized definition of ecosystem collapse for risk assessment’, Frontiers in Ecology and the Environment, 16(1), pp. 29–36.  https://doi.org/10.1002/fee.1747

Blenckner, T. and Niiranen, S. (2013) ‘4.16 – Biodiversity – Marine Food-Web Structure, Stability, and Regime Shifts’, in R.A. Pielke (ed.) Climate Vulnerability. Oxford: Academic Press, pp. 203–212.  https://doi.org/10.1016/B978-0-12-384703-4.00423-8

Boada, J., Arthur, R., Alonso, D., Pagès, J.F., Pessarrodona, A., Oliva, S., Ceccherelli, G., Piazzi, L., Romero, J. and Alcoverro, T. (2017) ‘Immanent conditions determine imminent collapses: nutrient regimes define the resilience of macroalgal communities’, Proceedings of the Royal Society B: Biological Sciences, 284(1851), p. 20162814.  https://doi.org/10.1098/rspb.2016.2814

Bond, W.J. and Midgley, G.F. (2012) ‘Carbon dioxide and the uneasy interactions of trees and savannah grasses’, Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1588), pp. 601–612.  https://doi.org/10.1098/rstb.2011.0182

Bongaerts, P. and Smith, T.B. (2019) ‘Beyond the “Deep Reef Refuge” Hypothesis: A Conceptual Framework to Characterize Persistence at Depth’, in Y. Loya, K.A. Puglise, and T.C.L. Bridge (eds) Mesophotic Coral Ecosystems. Cham: Springer International Publishing (Coral Reefs of the World), pp. 881–895.  https://doi.org/10.1007/978-3-319-92735-0_45

Boström, B. and Pettersson, K. (1982) ‘Different patterns of phosphorus release from lake sediments in laboratory experiments’, Hydrobiologia, 91(0), pp. 415–429.  https://doi.org/10.1007/PL00020032

Boulton, C.A., Booth, B.B.B. and Good, P. (2017) ‘Exploring uncertainty of Amazon dieback in a perturbed parameter Earth system ensemble’, Global Change Biology, 23(12), pp. 5032–5044.  https://doi.org/10.1111/gcb.13733.

Boulton, C.A., Lenton, T.M. and Boers, N. (2022) ‘Pronounced loss of Amazon rainforest resilience since the early 2000s’, Nature Climate Change, 12(3), pp. 271–278.  https://doi.org/10.1038/s41558-022-01287-8

Brabrand, Å., Faafeng, B.A. and Moritz Nilssen, J.P. (1990) ‘Relative Importance of Phosphorus Supply to Phytoplankton Production: Fish Excretion versus External Loading’, Canadian Journal of Fisheries and Aquatic Sciences, 47(2), pp. 364–372.  https://doi.org/10.1139/f90-038

Brando, P.M., Balch, J.K., Nepstad, D.C., Morton, D.C., Putz, F.E., Coe, M.T., Silvério, D., Macedo, M.N., Davidson, E.A., Nóbrega, C.C., Alencar, A. and Soares-Filho, B.S. (2014) ‘Abrupt increases in Amazonian tree mortality due to drought–fire interactions’, Proceedings of the National Academy of Sciences, 111(17), pp. 6347–6352.  https://doi.org/10.1073/pnas.1305499111

Breitburg, D., Levin, L.A., Oschlies, A., Grégoire, M., Chavez, F.P., Conley, D.J., Garçon, V., Gilbert, D., Gutiérrez, D., Isensee, K., Jacinto, G.S., Limburg, K.E., Montes, I., Naqvi, S.W.A., Pitcher, G.C., Rabalais, N.N., Roman, M.R., Rose, K.A., Seibel, B.A., Telszewski, M., Yasuhara, M. and Zhang, J. (2018) ‘Declining oxygen in the global ocean and coastal waters’, Science, 359(6371), p. eaam7240.  https://doi.org/10.1126/science.aam7240

Brienen, R.J.W., Caldwell, L., Duchesne, L., Voelker, S., Barichivich, J., Baliva, M., Ceccantini, G., Di Filippo, A., Helama, S., Locosselli, G.M., Lopez, L., Piovesan, G., Schöngart, J., Villalba, R. and Gloor, E. (2020) ‘Forest carbon sink neutralized by pervasive growth-lifespan trade-offs’, Nature Communications, 11(1), p. 4241.  https://doi.org/10.1038/s41467-020-17966-z

Brierley, C.M. and Fedorov, A.V. (2016) ‘Comparing the impacts of Miocene–Pliocene changes in inter-ocean gateways on climate: Central American Seaway, Bering Strait, and Indonesia’, Earth and Planetary Science Letters, 444, pp. 116–130.  https://doi.org/10.1016/j.epsl.2016.03.010

Brook, B.W., Ellis, E.C., Perring, M.P., Mackay, A.W. and Blomqvist, L. (2013) ‘Does the terrestrial biosphere have planetary tipping points?’, Trends in Ecology & Evolution, 28(7), pp. 396–401.  https://doi.org/10.1016/j.tree.2013.01.016

Bunting, P., Rosenqvist, A., Hilarides, L., Lucas, R.M., Thomas, N., Tadono, T., Worthington, T.A., Spalding, M., Murray, N.J. and Rebelo, L.-M. (2022) ‘Global Mangrove Extent Change 1996–2020: Global Mangrove Watch Version 3.0’, Remote Sensing, 14(15), p. 3657.  https://doi.org/10.3390/rs14153657

Buras, A., Rammig, A. and Zang, C.S. (2020) ‘Quantifying impacts of the 2018 drought on European ecosystems in comparison to 2003’, Biogeosciences, 17(6), pp. 1655–1672.  https://doi.org/10.5194/bg-17-1655-2020

Burke, L., Reytar, K., Spalding, M. and Perry, A. (2011) Reefs at Risk Revisited. World Resouces Institute.  https://www.wri.org/research/reefs-risk-revisited (Accessed: 19 October 2023)

Burrell, A., Kukavskaya, E., Baxter, R., Sun, Q. and Barrett, K. (2021) ‘Post-fire Recruitment Failure as a Driver of Forest to Non-forest Ecosystem Shifts in Boreal Regions’, in J.G. Canadell and R.B. Jackson (eds) Ecosystem Collapse and Climate Change. Cham: Springer International Publishing (Ecological Studies), pp. 69–100.  https://doi.org/10.1007/978-3-030-71330-0_4

Burrell, A.L., Evans, J.P. and De Kauwe, M.G. (2020) ‘Anthropogenic climate change has driven over 5 million km2 of drylands towards desertification’, Nature Communications, 11(1), p. 3853.  https://doi.org/10.1038/s41467-020-17710-7

Bustamante, M.M.C., de Brito, D.Q., Kozovits, A.R., Luedemann, G., de Mello, T.R.B., de Siqueira Pinto, A., Munhoz, C.B.R. and Takahashi, F.S.C. (2012) ‘Effects of nutrient additions on plant biomass and diversity of the herbaceous-subshrub layer of a Brazilian savanna (Cerrado)’, Plant Ecology, 213(5), pp. 795–808.  https://doi.org/10.1007/s11258-012-0042-4

Canadell, J.G., Monteiro, P.M.S., Costa, M.H., Cunha, L.C. da, Cox, P.M., Eliseev, A.V., Henson, S., Ishii, M., Jaccard, S., Koven, C., Lohila, A., Patra, P.K., Piao, S., Rogelj, J., Syampungani, S., Zaehle, S. and Zickfeld, K. (2021) ‘Chapter 5: Global Carbon and other Biogeochemical Cycles and Feedbacks’, in V. Masson-Delmotte, P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds) Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Repor. Cambridge University Press

Cano, I.M., Shevliakova, E., Malyshev, S., John, J.G., Yu, Y., Smith, B. and Pacala, S.W. (2022) ‘Abrupt loss and uncertain recovery from fires of Amazon forests under low climate mitigation scenarios’, Proceedings of the National Academy of Sciences, 119(52), p. e2203200119.  https://doi.org/10.1073/pnas.2203200119

Cardinale, B.J., Matulich, K.L., Hooper, D.U., Byrnes, J.E., Duffy, E., Gamfeldt, L., Balvanera, P., O’Connor, M.I. and Gonzalez, A. (2011) ‘The functional role of producer diversity in ecosystems’, American Journal of Botany, 98(3), pp. 572–592.  https://doi.org/10.3732/ajb.1000364

Cardoso, A.W., Archibald, S., Bond, W.J., Coetsee, C., Forrest, M., Govender, N., Lehmann, D., Makaga, L., Mpanza, N., Ndong, J.E., Koumba Pambo, A.F., Strydom, T., Tilman, D., Wragg, P.D. and Staver, A.C. (2022) ‘Quantifying the environmental limits to fire spread in grassy ecosystems’, Proceedings of the National Academy of Sciences, 119(26), p. e2110364119.  https://doi.org/10.1073/pnas.2110364119

Carlson, P.R., Yarbro, L.A., Kaufman, K.A. and Mattson, R.A. (2010) ‘Vulnerability and resilience of seagrasses to hurricane and runoff impacts along Florida’s west coast’, Hydrobiologia, 649(1), pp. 39–53.  https://doi.org/10.1007/s10750-010-0257-0

Carnicer, J., Vives-Ingla, M., Blanquer, L., Méndez-Camps, X., Rosell, C., Sabaté, S., Gutiérrez, E., Sauras, T., Peñuelas, J. and Barbeta, A. (2021) ‘Forest resilience to global warming is strongly modulated by local-scale topographic, microclimatic and biotic conditions’, Journal of Ecology, 109(9), pp. 3322–3339.  https://doi.org/10.1111/1365-2745.13752.

Carpenter, S.R. (2005) ‘Eutrophication of aquatic ecosystems: Bistability and soil phosphorus’, Proceedings of the National Academy of Sciences, 102(29), pp. 10002–10005.  https://doi.org/10.1073/pnas.0503959102

Carpenter, S.R. and Kitchell, J.F. (1988) ‘Consumer Control of Lake Productivity: Large-scale experimental manipulations reveal complex interactions among lake organisms’, BioScience, 38(11), pp. 764–769.  https://doi.org/10.2307/1310785

Carpenter, S.R., Kitchell, J.F. and Hodgson, J.R. (1985) ‘Cascading Trophic Interactions and Lake Productivity: Fish predation and herbivory can regulate lake ecosystems’, BioScience, 35(10), pp. 634–639.  https://doi.org/10.2307/1309989.

Carpenter, S.R., Ludwig, D. and Brock, W.A. (1999) ‘Management of Eutrophication for Lakes Subject To Potentially Irreversible Change’, Ecological Applications, 9(3), pp. 751–771.  https://doi.org/10.1890/1051-0761(1999)009[0751:MOEFLS]2.0.CO;2

Carr, J.A., D’Odorico, P., McGlathery, K.J. and Wiberg, P.L. (2012) ‘Modeling the effects of climate change on eelgrass stability and resilience: future scenarios and leading indicators of collapse’, Marine Ecology Progress Series, 448, pp. 289–301.  https://www.jstor.org/stable/24875864 (Accessed: 19 October 2023)

Carr, M.-E., Friedrichs, M.A.M., Schmeltz, M., Noguchi Aita, M., Antoine, D., Arrigo, K.R., Asanuma, I., Aumont, O., Barber, R., Behrenfeld, M., Bidigare, R., Buitenhuis, E.T., Campbell, J., Ciotti, A., Dierssen, H., Dowell, M., Dunne, J., Esaias, W., Gentili, B., Gregg, W., Groom, S., Hoepffner, N., Ishizaka, J., Kameda, T., Le Quéré, C., Lohrenz, S., Marra, J., Mélin, F., Moore, K., Morel, A., Reddy, T.E., Ryan, J., Scardi, M., Smyth, T., Turpie, K., Tilstone, G., Waters, K. and Yamanaka, Y. (2006) ‘A comparison of global estimates of marine primary production from ocean color’, Deep Sea Research Part II: Topical Studies in Oceanography, 53(5), pp. 741–770.  https://doi.org/10.1016/j.dsr2.2006.01.028

Case, M.F., Wigley, B.J., Wigley-Coetsee, C. and Carla Staver, A. (2020) ‘Could drought constrain woody encroachers in savannas?’, African Journal of Range & Forage Science, 37(1), pp. 19–29.  https://doi.org/10.2989/10220119.2019.1697363

Casini, M., Hjelm, J., Molinero, J.-C., Lövgren, J., Cardinale, M., Bartolino, V., Belgrano, A. and Kornilovs, G. (2009) ‘Trophic cascades promote threshold-like shifts in pelagic marine ecosystems’, Proceedings of the National Academy of Sciences, 106(1), pp. 197–202.  https://doi.org/10.1073/pnas.0806649105

Ceballos, G., Ehrlich, P.R., Barnosky, A.D., García, A., Pringle, R.M. and Palmer, T.M. (2015) ‘Accelerated modern human–induced species losses: Entering the sixth mass extinction’, Science Advances, 1(5), p. e1400253.  https://doi.org/10.1126/sciadv.1400253

Charles-Dominique, T., Staver, A.C., Midgley, G.F. and Bond, W.J. (2015) ‘Functional differentiation of biomes in an African savanna/forest mosaic’, South African Journal of Botany, 101, pp. 82–90.  https://doi.org/10.1016/j.sajb.2015.05.005

Charney, J., Stone, P.H. and Quirk, W.J. (1975) ‘Drought in the Sahara: A Biogeophysical Feedback Mechanism’, Science, 187(4175), pp. 434–435.  https://doi.org/10.1126/science.187.4175.434

Charney, J.G. (1975) ‘Dynamics of deserts and drought in the Sahel’, Quarterly Journal of the Royal Meteorological Society, 101(428), pp. 193–202.  https://doi.org/10.1002/qj.49710142802

Chavez, F.P., Ryan, J., Lluch-Cota, S.E. and Ñiquen C., M. (2003) ‘From Anchovies to Sardines and Back: Multidecadal Change in the Pacific Ocean’, Science, 299(5604), pp. 217–221.  https://doi.org/10.1126/science.1075880

Cherlet, M., Hutchinson, C., Reynolds, J., Hill, J., Sommer, S. and von Maltitz, G. (eds) (2018) World Atlas of Desertification. Luxembourg: Publication Office of the European Union.  https://data.europa.eu/doi/10.2760/9205 (Accessed: 18 October 2023)

Cingolani, A.M., Noy-Meir, I. and Díaz, S. (2005) ‘Grazing Effects on Rangeland Diversity: A Synthesis of Contemporary Models’, Ecological Applications, 15(2), pp. 757–773.  https://doi.org/10.1890/03-5272

Claussen, M., Dallmeyer, A. and Bader, J. (2017) ‘Theory and Modeling of the African Humid Period and the Green Sahara’, in Oxford Research Encyclopedia of Climate Science.  https://doi.org/10.1093/acrefore/9780190228620.013.532

Claussen, M., Kubatzki, C., Brovkin, V., Ganopolski, A., Hoelzmann, P. and Pachur, H.-J. (1999) ‘Simulation of an abrupt change in Saharan vegetation in the Mid-Holocene’, Geophysical Research Letters, 26(14), pp. 2037–2040.  https://doi.org/10.1029/1999GL900494

Cochrane, M.A., Alencar, A., Schulze, M.D., Souza, C.M., Nepstad, D.C., Lefebvre, P. and Davidson, E.A. (1999) ‘Positive Feedbacks in the Fire Dynamic of Closed Canopy Tropical Forests’, Science, 284(5421), pp. 1832–1835.  https://doi.org/10.1126/science.284.5421.1832

Conley, D.J., Humborg, C., Rahm, L., Savchuk, O.P. and Wulff, F. (2002) ‘Hypoxia in the Baltic Sea and Basin-Scale Changes in Phosphorus Biogeochemistry’, Environmental Science & Technology, 36(24), pp. 5315–5320.  https://doi.org/10.1021/es025763w

Conversi, A., Dakos, V., Gårdmark, A., Ling, S., Folke, C., Mumby, P.J., Greene, C., Edwards, M., Blenckner, T., Casini, M., Pershing, A. and Möllmann, C. (2015) ‘A holistic view of marine regime shifts’, Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1659), p. 20130279.  https://doi.org/10.1098/rstb.2013.0279

Conversi, A., Umani, S.F., Peluso, T., Molinero, J.C., Santojanni, A. and Edwards, M. (2010) ‘The Mediterranean Sea Regime Shift at the End of the 1980s, and Intriguing Parallelisms with Other European Basins’, PLOS ONE, 5(5), p. e10633.  https://doi.org/10.1371/journal.pone.0010633

Cooley, S., Schoeman, D., Bopp, L., Boyd, P., Donner, S., Ghebrehiwet, D.Y., Ito, S.-I., Kiessling, W., Martinetto, P., Ojea, E., Racault, M.-F., Rost, B. and Skern-Mauritzen, M. (2023) ‘Chapter 3: Oceans and Coastal Ecosystems and their Services’, in Climate Change 2022 – Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. 1st edn. Cambridge, UK and New York, NY, USA: Cambridge University Press, pp. 379–550.  https://doi.org/10.1017/9781009325844.005

Cooper, G.S., Willcock, S. and Dearing, J.A. (2020) ‘Regime shifts occur disproportionately faster in larger ecosystems’, Nature Communications, 11(1), p. 1175.  https://doi.org/10.1038/s41467-020-15029-x.

Costa, M.H., Borma, L.S., Brando, P.M., Marengo, J.A., Saleska, S.R. and Gatti, L.V. (2021) ‘Chapter 7: Biogeophysical Cycles: Water Recycling, Climate Regulation’, in Science Panel for the Amazon, Amazon Assessment Report 2021. 1st edn. Edited by C. Nobre, A. Encalada, E. Anderson, F. H. Roca Alcazar, M. Bustamante, C. Mena, M. Peña-Claros, G. Poveda, J. P. Rodriguez, S. Saleska, S. E. Trumbore, A. Val, L. Villa Nova, R. Abramovay, A. Alencar, A. C. Rodriguez Alzza, D. Armenteras, P. Artaxo, S. Athayde, H. T. Barretto Filho, J. Barlow, E. Berenguer, F. Bortolotto, F. D. A. Costa, M. H. Costa, N. Cuvi, P. Fearnside, J. Ferreira, B. M. Flores, S. Frieri, L. V. Gatti, J. M. Guayasamin, S. Hecht, M. Hirota, C. Hoorn, C. Josse, D. M. Lapola, C. Larrea, D. M. Larrea-Alcazar, Z. Lehm Ardaya, Y. Malhi, J. A. Marengo, J. Melack, M. Moraes R., P. Moutinho, M. R. Murmis, E. G. Neves, B. Paez, L. Painter, A. Ramos, M. C. Rosero-Peña, M. Schmink, P. Sist, H. Ter Steege, P. Val, H. Van Der Voort, M. Varese, and G. Zapata-Ríos. UN Sustainable Development Solutions Network (SDSN).  https://doi.org/10.55161/KKHX1998

Cramer, K.L., Jackson, J.B.C., Donovan, M.K., Greenstein, B.J., Korpanty, C.A., Cook, G.M. and Pandolfi, J.M. (2020) ‘Widespread loss of Caribbean acroporid corals was underway before coral bleaching and disease outbreaks’, Science Advances, 6(17), p. eaax9395.  https://doi.org/10.1126/sciadv.aax9395

Creed, I.F., Bergström, A.-K., Trick, C.G., Grimm, N.B., Hessen, D.O., Karlsson, J., Kidd, K.A., Kritzberg, E., McKnight, D.M., Freeman, E.C., Senar, O.E., Andersson, A., Ask, J., Berggren, M., Cherif, M., Giesler, R., Hotchkiss, E.R., Kortelainen, P., Palta, M.M., Vrede, T. and Weyhenmeyer, G.A. (2018) ‘Global change-driven effects on dissolved organic matter composition: Implications for food webs of northern lakes’, Global Change Biology, 24(8), pp. 3692–3714.  https://doi.org/10.1111/gcb.14129

Cunillera-Montcusí, D., Beklioğlu, M., Cañedo-Argüelles, M., Jeppesen, E., Ptacnik, R., Amorim, C.A., Arnott, S.E., Berger, S.A., Brucet, S., Dugan, H.A., Gerhard, M., Horváth, Z., Langenheder, S., Nejstgaard, J.C., Reinikainen, M., Striebel, M., Urrutia-Cordero, P., Vad, C.F., Zadereev, E. and Matias, M. (2022) ‘Freshwater salinisation: a research agenda for a saltier world’, Trends in Ecology & Evolution, 37(5), pp. 440–453.  https://doi.org/10.1016/j.tree.2021.12.005

Dakos, V. (2019) ‘Ecological Transitions: Regime Shifts, Thresholds and Tipping Points’, Oxford Bibliographies [Preprint].  https://doi.org/10.1093/OBO/9780199363445-0108

D’Angioli, A.M., Giles, A.L., Costa, P.B., Wolfsdorf, G., Pecoral, L.L.F., Verona, L., Piccolo, F., Sampaio, A.B., Schmidt, I.B., Rowland, L., Lambers, H., Kandeler, E., Oliveira, R.S. and Abrahão, A. (2022) ‘Abandoned pastures and restored savannas have distinct patterns of plant–soil feedback and nutrient cycling compared with native Brazilian savannas’, Journal of Applied Ecology, 59(7), pp. 1863–1873.  https://doi.org/10.1111/1365-2664.14193

Dantas, V. de L., Hirota, M., Oliveira, R.S. and Pausas, J.G. (2016) ‘Disturbance maintains alternative biome states’, Ecology Letters, 19(1), pp. 12–19.  https://doi.org/10.1111/ele.12537

D’Antonio, C.M. and Vitousek, P.M. (1992) ‘Biological Invasions by Exotic Grasses, the Grass/Fire Cycle, and Global Change’, Annual Review of Ecology and Systematics, 23(1), pp. 63–87.  https://doi.org/10.1146/annurev.es.23.110192.000431

Darling, E.S., McClanahan, T.R., Maina, J., Gurney, G.G., Graham, N.A.J., Januchowski-Hartley, F., Cinner, J.E., Mora, C., Hicks, C.C., Maire, E., Puotinen, M., Skirving, W.J., Adjeroud, M., Ahmadia, G., Arthur, R., Bauman, A.G., Beger, M., Berumen, M.L., Bigot, L., Bouwmeester, J., Brenier, A., Bridge, T.C.L., Brown, E., Campbell, S.J., Cannon, S., Cauvin, B., Chen, C.A., Claudet, J., Denis, V., Donner, S., Estradivari, Fadli, N., Feary, D.A., Fenner, D., Fox, H., Franklin, E.C., Friedlander, A., Gilmour, J., Goiran, C., Guest, J., Hobbs, J.-P.A., Hoey, A.S., Houk, P., Johnson, S., Jupiter, S.D., Kayal, M., Kuo, C., Lamb, J., Lee, M.A.C., Low, J., Muthiga, N., Muttaqin, E., Nand, Y., Nash, K.L., Nedlic, O., Pandolfi, J.M., Pardede, S., Patankar, V., Penin, L., Ribas-Deulofeu, L., Richards, Z., Roberts, T.E., Rodgers, K.S., Safuan, C.D.M., Sala, E., Shedrawi, G., Sin, T.M., Smallhorn-West, P., Smith, J.E., Sommer, B., Steinberg, P.D., Sutthacheep, M., Tan, C.H.J., Williams, G.J., Wilson, S., Yeemin, T., Bruno, J.F., Fortin, M.-J., Krkosek, M. and Mouillot, D. (2019) ‘Social–environmental drivers inform strategic management of coral reefs in the Anthropocene’, Nature Ecology & Evolution, 3(9), pp. 1341–1350.  https://doi.org/10.1038/s41559-019-0953-8

Darnis, G., Robert, D., Pomerleau, C., Link, H., Archambault, P., Nelson, R.J., Geoffroy, M., Tremblay, J.-É., Lovejoy, C., Ferguson, S.H., Hunt, B.P.V. and Fortier, L. (2012) ‘Current state and trends in Canadian Arctic marine ecosystems: II. Heterotrophic food web, pelagic-benthic coupling, and biodiversity’, Climatic Change, 115(1), pp. 179–205.  https://doi.org/10.1007/s10584-012-0483-8

Daskalov, G.M., Boicenco, L., Grishin, A.N., Lazar, L., Mihneva, V., Shlyakhov, V.A. and Zengin, M. (2017) ‘Architecture of collapse: regime shift and recovery in an hierarchically structured marine ecosystem’, Global Change Biology, 23(4), pp. 1486–1498.  https://doi.org/10.1111/gcb.13508

Daskalov, G.M., Grishin, A.N., Rodionov, S. and Mihneva, V. (2007) ‘Trophic cascades triggered by overfishing reveal possible mechanisms of ecosystem regime shifts’, Proceedings of the National Academy of Sciences, 104(25), pp. 10518–10523.  https://doi.org/10.1073/pnas.0701100104

Dekker, S.C., Rietkerk, M. and Bierkens, M.F.P. (2007) ‘Coupling microscale vegetation–soil water and macroscale vegetation–precipitation feedbacks in semiarid ecosystems’, Global Change Biology, 13(3), pp. 671–678.  https://doi.org/10.1111/j.1365-2486.2007.01327.x.

Delgado-Baquerizo, M., Doulcier, G., Eldridge, D.J., Stouffer, D.B., Maestre, F.T., Wang, J., Powell, J.R., Jeffries, T.C. and Singh, B.K. (2020) ‘Increases in aridity lead to drastic shifts in the assembly of dryland complex microbial networks’, Land Degradation & Development, 31(3), pp. 346–355.  https://doi.org/10.1002/ldr.3453

Delgado-Baquerizo, M., Eldridge, D.J., Maestre, F.T., Karunaratne, S.B., Trivedi, P., Reich, P.B. and Singh, B.K. (2017) ‘Climate legacies drive global soil carbon stocks in terrestrial ecosystems’, Science Advances, 3(4), p. e1602008.  https://doi.org/10.1126/sciadv.1602008

Delgado-Baquerizo, M., Maestre, F.T., Gallardo, A., Bowker, M.A., Wallenstein, M.D., Quero, J.L., Ochoa, V., Gozalo, B., García-Gómez, M., Soliveres, S., García-Palacios, P., Berdugo, M., Valencia, E., Escolar, C., Arredondo, T., Barraza-Zepeda, C., Bran, D., Carreira, J.A., Chaieb, M., Conceição, A.A., Derak, M., Eldridge, D.J., Escudero, A., Espinosa, C.I., Gaitán, J., Gatica, M.G., Gómez-González, S., Guzman, E., Gutiérrez, J.R., Florentino, A., Hepper, E., Hernández, R.M., Huber-Sannwald, E., Jankju, M., Liu, J., Mau, R.L., Miriti, M., Monerris, J., Naseri, K., Noumi, Z., Polo, V., Prina, A., Pucheta, E., Ramírez, E., Ramírez-Collantes, D.A., Romão, R., Tighe, M., Torres, D., Torres-Díaz, C., Ungar, E.D., Val, J., Wamiti, W., Wang, D. and Zaady, E. (2013) ‘Decoupling of soil nutrient cycles as a function of aridity in global drylands’, Nature, 502(7473), pp. 672–676.  https://doi.org/10.1038/nature12670

Dexter, K.G., Pennington, R.T., Oliveira-Filho, A.T., Bueno, M.L., Silva de Miranda, P.L. and Neves, D.M. (2018) ‘Inserting Tropical Dry Forests Into the Discussion on Biome Transitions in the Tropics’, Frontiers in Ecology and Evolution, 6.  https://www.frontiersin.org/articles/10.3389/fevo.2018.00104 (Accessed: 16 October 2023)

Diaz, R.J. and Rosenberg, R. (2008) ‘Spreading Dead Zones and Consequences for Marine Ecosystems’, Science, 321(5891), pp. 926–929.  https://doi.org/10.1126/science.1156401

van Dijk, G., Lamers, L.P.M., Loeb, R., Westendorp, P.-J., Kuiperij, R., van Kleef, H.H., Klinge, M. and Smolders, A.J.P. (2019) ‘Salinization lowers nutrient availability in formerly brackish freshwater wetlands; unexpected results from a long-term field experiment’, Biogeochemistry, 143(1), pp. 67–83.  https://doi.org/10.1007/s10533-019-00549-6

Dinerstein, E., Olson, D., Joshi, A., Vynne, C., Burgess, N.D., Wikramanayake, E., Hahn, N., Palminteri, S., Hedao, P., Noss, R., Hansen, M., Locke, H., Ellis, E.C., Jones, B., Barber, C.V., Hayes, R., Kormos, C., Martin, V., Crist, E., Sechrest, W., Price, L., Baillie, J.E.M., Weeden, D., Suckling, K., Davis, C., Sizer, N., Moore, R., Thau, D., Birch, T., Potapov, P., Turubanova, S., Tyukavina, A., de Souza, N., Pintea, L., Brito, J.C., Llewellyn, O.A., Miller, A.G., Patzelt, A., Ghazanfar, S.A., Timberlake, J., Klöser, H., Shennan-Farpón, Y., Kindt, R., Lillesø, J.-P.B., van Breugel, P., Graudal, L., Voge, M., Al-Shammari, K.F. and Saleem, M. (2017) ‘An Ecoregion-Based Approach to Protecting Half the Terrestrial Realm’, BioScience, 67(6), pp. 534–545.  https://doi.org/10.1093/biosci/bix014

Dixon, A.M., Forster, P.M., Heron, S.F., Stoner, A.M.K. and Beger, M. (2022) ‘Future loss of local-scale thermal refugia in coral reef ecosystems’, PLOS Climate, 1(2), p. e0000004.  https://doi.org/10.1371/journal.pclm.0000004

D’Odorico, P., Caylor, K., Okin, G.S. and Scanlon, T.M. (2007) ‘On soil moisture–vegetation feedbacks and their possible effects on the dynamics of dryland ecosystems’, Journal of Geophysical Research: Biogeosciences, 112(G4), p. 2006JG000379.  https://doi.org/10.1029/2006JG000379

D’Odorico, P., Okin, G.S. and Bestelmeyer, B.T. (2012) ‘A synthetic review of feedbacks and drivers of shrub encroachment in arid grasslands’, Ecohydrology, 5(5), pp. 520–530.  https://doi.org/10.1002/eco.259

Donato, D.C., Kauffman, J.B., Murdiyarso, D., Kurnianto, S., Stidham, M. and Kanninen, M. (2011) ‘Mangroves among the most carbon-rich forests in the tropics’, Nature Geoscience, 4(5), pp. 293–297.  https://doi.org/10.1038/ngeo1123

Dosio, A., Jury, M.W., Almazroui, M., Ashfaq, M., Diallo, I., Engelbrecht, F.A., Klutse, N.A.B., Lennard, C., Pinto, I., Sylla, M.B. and Tamoffo, A.T. (2021) ‘Projected future daily characteristics of African precipitation based on global (CMIP5, CMIP6) and regional (CORDEX, CORDEX-CORE) climate models’, Climate Dynamics, 57(11), pp. 3135–3158.  https://doi.org/10.1007/s00382-021-05859-w

Downing, J.A., Polasky, S., Olmstead, S.M. and Newbold, S.C. (2021) ‘Protecting local water quality has global benefits’, Nature Communications, 12(1), p. 2709.  https://doi.org/10.1038/s41467-021-22836-3

Drijfhout, S., Bathiany, S., Beaulieu, C., Brovkin, V., Claussen, M., Huntingford, C., Scheffer, M., Sgubin, G. and Swingedouw, D. (2015) ‘Catalogue of abrupt shifts in Intergovernmental Panel on Climate Change climate models’, Proceedings of the National Academy of Sciences, 112(43), pp. E5777–E5786.  https://doi.org/10.1073/pnas.1511451112

Drüke, M., Sakschewski, B., von Bloh, W., Billing, M., Lucht, W. and Thonicke, K. (2023) ‘Fire may prevent future Amazon forest recovery after large-scale deforestation’, Communications Earth & Environment, 4(1), pp. 1–10.  https://doi.org/10.1038/s43247-023-00911-5

Duarte, B., Martins, I., Rosa, R., Matos, A.R., Roleda, M.Y., Reusch, T.B.H., Engelen, A.H., Serrão, E.A., Pearson, G.A., Marques, J.C., Caçador, I., Duarte, C.M. and Jueterbock, A. (2018) ‘Climate Change Impacts on Seagrass Meadows and Macroalgal Forests: An Integrative Perspective on Acclimation and Adaptation Potential’, Frontiers in Marine Science, 5.  https://www.frontiersin.org/articles/10.3389/fmars.2018.00190 (Accessed: 19 October 2023)

Duke, N. (2023) ‘15. More intense severe tropical cyclones in recent decades cause greater impacts on mangroves bordering Australia’s Great Barrier Reef’, in E. Wolanski and M.J. Kingsford (eds) Oceanographic Processes of Coral Reefs: Physical and Biological Links in the Great Barrier Reef. 2nd edn. Boca Raton: CRC Press.

Duke, N.C. (2017b) ‘Mangrove Floristics and Biogeography Revisited: Further Deductions from Biodiversity Hot Spots, Ancestral Discontinuities, and Common Evolutionary Processes’, in V.H. Rivera-Monroy, S.Y. Lee, E. Kristensen, and R.R. Twilley (eds) Mangrove Ecosystems: A Global Biogeographic Perspective: Structure, Function, and Services. Cham: Springer International Publishing, pp. 17–53.  https://doi.org/10.1007/978-3-319-62206-4_2

Duke, N.C., Field, C., Mackenzie, J.R., Meynecke, J.-O., Wood, A.L., Duke, N.C., Field, C., Mackenzie, J.R., Meynecke, J.-O. and Wood, A.L. (2019) ‘Rainfall and its possible hysteresis effect on the proportional cover of tropical tidal-wetland mangroves and saltmarsh–saltpans’, Marine and Freshwater Research, 70(8), pp. 1047–1055.  https://doi.org/10.1071/MF18321

Duke, N.C., Hutley, L.B., Mackenzie, J.R. and Burrows, D. (2021) ‘Processes and Factors Driving Change in Mangrove Forests: An Evaluation Based on the Mass Dieback Event in Australia’s Gulf of Carpentaria’, in J.G. Canadell and R.B. Jackson (eds) Ecosystem Collapse and Climate Change. Cham: Springer International Publishing (Ecological Studies), pp. 221–264.  https://doi.org/10.1007/978-3-030-71330-0_9

Duke, N.C., Kovacs, J.M., Griffiths, A.D., Preece, L., Hill, D.J.E., Oosterzee, P. van, Mackenzie, J., Morning, H.S., Burrows, D., Duke, N.C., Kovacs, J.M., Griffiths, A.D., Preece, L., Hill, D.J.E., Oosterzee, P. van, Mackenzie, J., Morning, H.S. and Burrows, D. (2017a) ‘Large-scale dieback of mangroves in Australia’s Gulf of Carpentaria: a severe ecosystem response, coincidental with an unusually extreme weather event’, Marine and Freshwater Research, 68(10), pp. 1816–1829.  https://doi.org/10.1071/MF16322

Duke, N.C., Mackenzie, J.R., Canning, A.D., Hutley, L.B., Bourke, A.J., Kovacs, J.M., Cormier, R., Staben, G., Lymburner, L. and Ai, E. (2022) ‘ENSO-driven extreme oscillations in mean sea level destabilise critical shoreline mangroves—An emerging threat’, PLOS Climate, 1(8), p. e0000037.  https://doi.org/10.1371/journal.pclm.0000037

Dunic, J.C., Brown, C.J., Connolly, R.M., Turschwell, M.P. and Côté, I.M. (2021) ‘Long-term declines and recovery of meadow area across the world’s seagrass bioregions’, Global Change Biology, 27(17), pp. 4096–4109.  https://doi.org/10.1111/gcb.15684

Edmunds, P.J. and Gray, S.C. (2014) ‘The effects of storms, heavy rain, and sedimentation on the shallow coral reefs of St. John, US Virgin Islands’, Hydrobiologia, 734(1), pp. 143–158.  https://doi.org/10.1007/s10750-014-1876-7

Ehleringer, J. and Björkman, O. (1977) ‘Quantum Yields for CO 2 Uptake in C 3 and C 4 Plants: Dependence on Temperature, CO 2 , and O 2 Concentration’, Plant Physiology, 59(1), pp. 86–90.  https://doi.org/10.1104/pp.59.1.86

Ellis, E.C., Gauthier, N., Klein Goldewijk, K., Bliege Bird, R., Boivin, N., Díaz, S., Fuller, D.Q., Gill, J.L., Kaplan, J.O., Kingston, N., Locke, H., McMichael, C.N.H., Ranco, D., Rick, T.C., Shaw, M.R., Stephens, L., Svenning, J.-C. and Watson, J.E.M. (2021) ‘People have shaped most of terrestrial nature for at least 12,000 years’, Proceedings of the National Academy of Sciences, 118(17), p. e2023483118.  https://doi.org/10.1073/pnas.2023483118

Elser, J.J., Andersen, T., Baron, J.S., Bergström, A.-K., Jansson, M., Kyle, M., Nydick, K.R., Steger, L. and Hessen, D.O. (2009) ‘Shifts in Lake N:P Stoichiometry and Nutrient Limitation Driven by Atmospheric Nitrogen Deposition’, Science, 326(5954), pp. 835–837.  https://doi.org/10.1126/science.1176199

Elwell, H.A. and Stocking, M.A. (1976) ‘Vegetal cover to estimate soil erosion hazard in Rhodesia’, Geoderma, 15(1), pp. 61–70.  https://doi.org/10.1016/0016-7061(76)90071-9

Emmerton, C.A., Lesack, L.F.W. and Vincent, W.F. (2008) ‘Mackenzie River nutrient delivery to the Arctic Ocean and effects of the Mackenzie Delta during open water conditions’, Global Biogeochemical Cycles, 22(1).  https://doi.org/10.1029/2006GB002856

Erfanian, A., Wang, G., Yu, M. and Anyah, R. (2016) ‘Multimodel ensemble simulations of present and future climates over West Africa: Impacts of vegetation dynamics’, Journal of Advances in Modeling Earth Systems, 8(3), pp. 1411–1431.  https://doi.org/10.1002/2016MS000660

Esquivel-Muelbert, A., Baker, T.R., Dexter, K.G., Lewis, S.L., Brienen, R.J.W., Feldpausch, T.R., Lloyd, J., Monteagudo-Mendoza, A., Arroyo, L., Álvarez-Dávila, E., Higuchi, N., Marimon, B.S., Marimon-Junior, B.H., Silveira, M., Vilanova, E., Gloor, E., Malhi, Y., Chave, J., Barlow, J., Bonal, D., Davila Cardozo, N., Erwin, T., Fauset, S., Hérault, B., Laurance, S., Poorter, L., Qie, L., Stahl, C., Sullivan, M.J.P., ter Steege, H., Vos, V.A., Zuidema, P.A., Almeida, E., Almeida de Oliveira, E., Andrade, A., Vieira, S.A., Aragão, L., Araujo-Murakami, A., Arets, E., Aymard C, G.A., Baraloto, C., Camargo, P.B., Barroso, J.G., Bongers, F., Boot, R., Camargo, J.L., Castro, W., Chama Moscoso, V., Comiskey, J., Cornejo Valverde, F., Lola da Costa, A.C., del Aguila Pasquel, J., Di Fiore, A., Fernanda Duque, L., Elias, F., Engel, J., Flores Llampazo, G., Galbraith, D., Herrera Fernández, R., Honorio Coronado, E., Hubau, W., Jimenez-Rojas, E., Lima, A.J.N., Umetsu, R.K., Laurance, W., Lopez-Gonzalez, G., Lovejoy, T., Aurelio Melo Cruz, O., Morandi, P.S., Neill, D., Núñez Vargas, P., Pallqui Camacho, N.C., Parada Gutierrez, A., Pardo, G., Peacock, J., Peña-Claros, M., Peñuela-Mora, M.C., Petronelli, P., Pickavance, G.C., Pitman, N., Prieto, A., Quesada, C., Ramírez-Angulo, H., Réjou-Méchain, M., Restrepo Correa, Z., Roopsind, A., Rudas, A., Salomão, R., Silva, N., Silva Espejo, J., Singh, J., Stropp, J., Terborgh, J., Thomas, R., Toledo, M., Torres-Lezama, A., Valenzuela Gamarra, L., van de Meer, P.J., van der Heijden, G., van der Hout, P., Vasquez Martinez, R., Vela, C., Vieira, I.C.G. and Phillips, O.L. (2019) ‘Compositional response of Amazon forests to climate change’, Global Change Biology, 25(1), pp. 39–56.  https://doi.org/10.1111/gcb.14413

Fagan, M.E., Kim, D.-H., Settle, W., Ferry, L., Drew, J., Carlson, H., Slaughter, J., Schaferbien, J., Tyukavina, A., Harris, N.L., Goldman, E. and Ordway, E.M. (2022) ‘The expansion of tree plantations across tropical biomes’, Nature Sustainability, 5(8), pp. 681–688.  https://doi.org/10.1038/s41893-022-00904-w

Favier, C. (2004) ‘Percolation model of fire dynamic’, Physics Letters A, 330(5), pp. 396–401.  https://doi.org/10.1016/j.physleta.2004.07.053

Feller, I.C., Friess, D.A., Krauss, K.W. and Lewis, R.R. (2017) ‘The state of the world’s mangroves in the 21st century under climate change’, Hydrobiologia, 803(1), pp. 1–12.  https://doi.org/10.1007/s10750-017-3331-z

Fettig, C.J., Runyon, J.B., Homicz, C.S., James, P.M.A. and Ulyshen, M.D. (2022) ‘Fire and Insect Interactions in North American Forests’, Current Forestry Reports, 8(4), pp. 301–316.  https://doi.org/10.1007/s40725-022-00170-1

Filbee-Dexter, K. and Wernberg, T. (2018) ‘Rise of Turfs: A New Battlefront for Globally Declining Kelp Forests’, BioScience, 68(2), pp. 64–76.  https://doi.org/10.1093/biosci/bix147

Flannigan, M., Cantin, A.S., de Groot, W.J., Wotton, M., Newbery, A. and Gowman, L.M. (2013) ‘Global wildland fire season severity in the 21st century’, Forest Ecology and Management, 294, pp. 54–61.  https://doi.org/10.1016/j.foreco.2012.10.022

Flores, B.M. and Holmgren, M. (2021) ‘White-Sand Savannas Expand at the Core of the Amazon After Forest Wildfires’, Ecosystems, 24(7), pp. 1624–1637.  https://doi.org/10.1007/s10021-021-00607-x

Folke, C., Biggs, R., Norström, A., Reyers, B. and Rockström, J. (2016) ‘Social-ecological resilience and biosphere-based sustainability science’, Ecology and Society, 21(3).  https://doi.org/10.5751/ES-08748-210341

Folke, C., Carpenter, S., Walker, B., Scheffer, M., Elmqvist, T., Gunderson, L. and Holling, C.S. (2004) ‘Regime Shifts, Resilience, and Biodiversity in Ecosystem Management’, Annual Review of Ecology, Evolution, and Systematics, 35(1), pp. 557–581.  https://doi.org/10.1146/annurev.ecolsys.35.021103.105711

Folke, C., Polasky, S., Rockström, J., Galaz, V., Westley, F., Lamont, M., Scheffer, M., Österblom, H., Carpenter, S.R., Chapin, F.S., Seto, K.C., Weber, E.U., Crona, B.I., Daily, G.C., Dasgupta, P., Gaffney, O., Gordon, L.J., Hoff, H., Levin, S.A., Lubchenco, J., Steffen, W. and Walker, B.H. (2021) ‘Our future in the Anthropocene biosphere’, Ambio, 50(4), pp. 834–869.  https://doi.org/10.1007/s13280-021-01544-8.

Forzieri, G., Dakos, V., McDowell, N.G., Ramdane, A. and Cescatti, A. (2022) ‘Emerging signals of declining forest resilience under climate change’, Nature, 608(7923), pp. 534–539.  https://doi.org/10.1038/s41586-022-04959-9

Foster, M.S. and Schiel, D.R. (2010) ‘Loss of predators and the collapse of southern California kelp forests (?): Alternatives, explanations and generalizations’, Journal of Experimental Marine Biology and Ecology, 393(1), pp. 59–70.  https://doi.org/10.1016/j.jembe.2010.07.002

Francis, C.F. and Thornes, J.B. (1990) ‘Runoff hydrographs from three Mediterranean vegetation cover types.’, Vegetation and erosion. Processes and environments., pp. 363–384.  https://www.cabdirect.org/cabdirect/abstract/19911959169 (Accessed: 18 October 2023)

Frank, K.T., Petrie, B., Leggett, W.C. and Boyce, D.G. (2016) ‘Large scale, synchronous variability of marine fish populations driven by commercial exploitation’, Proceedings of the National Academy of Sciences, 113(29), pp. 8248–8253.  https://doi.org/10.1073/pnas.1602325113

Frelich, L.E. and Reich, P.B. (2010) ‘Will environmental changes reinforce the impact of global warming on the prairie–forest border of central North America?’, Frontiers in Ecology and the Environment, 8(7), pp. 371–378.  https://doi.org/10.1890/080191

Friedlingstein, P., O’Sullivan, M., Jones, M.W., Andrew, R.M., Gregor, L., Hauck, J., Le Quéré, C., Luijkx, I.T., Olsen, A., Peters, G.P., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J.G., Ciais, P., Jackson, R.B., Alin, S.R., Alkama, R., Arneth, A., Arora, V.K., Bates, N.R., Becker, M., Bellouin, N., Bittig, H.C., Bopp, L., Chevallier, F., Chini, L.P., Cronin, M., Evans, W., Falk, S., Feely, R.A., Gasser, T., Gehlen, M., Gkritzalis, T., Gloege, L., Grassi, G., Gruber, N., Gürses, Ö., Harris, I., Hefner, M., Houghton, R.A., Hurtt, G.C., Iida, Y., Ilyina, T., Jain, A.K., Jersild, A., Kadono, K., Kato, E., Kennedy, D., Klein Goldewijk, K., Knauer, J., Korsbakken, J.I., Landschützer, P., Lefèvre, N., Lindsay, K., Liu, J., Liu, Z., Marland, G., Mayot, N., McGrath, M.J., Metzl, N., Monacci, N.M., Munro, D.R., Nakaoka, S.-I., Niwa, Y., O’Brien, K., Ono, T., Palmer, P.I., Pan, N., Pierrot, D., Pocock, K., Poulter, B., Resplandy, L., Robertson, E., Rödenbeck, C., Rodriguez, C., Rosan, T.M., Schwinger, J., Séférian, R., Shutler, J.D., Skjelvan, I., Steinhoff, T., Sun, Q., Sutton, A.J., Sweeney, C., Takao, S., Tanhua, T., Tans, P.P., Tian, X., Tian, H., Tilbrook, B., Tsujino, H., Tubiello, F., van der Werf, G.R., Walker, A.P., Wanninkhof, R., Whitehead, C., Willstrand Wranne, A., Wright, R., Yuan, W., Yue, C., Yue, X., Zaehle, S., Zeng, J. and Zheng, B. (2022) ‘Global Carbon Budget 2022’, Earth System Science Data, 14(11), pp. 4811–4900.  https://doi.org/10.5194/essd-14-4811-2022

Frieler, K., Meinshausen, M., Golly, A., Mengel, M., Lebek, K., Donner, S.D. and Hoegh-Guldberg, O. (2013) ‘Limiting global warming to 2 °C is unlikely to save most coral reefs’, Nature Climate Change, 3(2), pp. 165–170.  https://doi.org/10.1038/nclimate1674

Friess, D.A., Adame, M.F., Adams, J.B. and Lovelock, C.E. (2022) ‘Mangrove forests under climate change in a 2°C world’, WIREs Climate Change, 13(4), p. e792.  https://doi.org/10.1002/wcc.792

Fu, W., Randerson, J.T. and Moore, J.K. (2016) ‘Climate change impacts on net primary production (NPP) and export production (EP) regulated by increasing stratification and phytoplankton community structure in the CMIP5 models’, Biogeosciences, 13(18), pp. 5151–5170.  https://doi.org/10.5194/bg-13-5151-2016

Galloway, A.W.E., Gravem, S.A., Kobelt, J.N., Heady, W.N., Okamoto, D.K., Sivitilli, D.M., Saccomanno, V.R., Hodin, J. and Whippo, R. (2023) ‘Sunflower sea star predation on urchins can facilitate kelp forest recovery’, Proceedings of the Royal Society B: Biological Sciences, 290(1993), p. 20221897.  https://doi.org/10.1098/rspb.2022.1897

Gao, Y., Zhong, B., Yue, H., Wu, B. and Cao, S. (2011) ‘A degradation threshold for irreversible loss of soil productivity: a long-term case study in China’, Journal of Applied Ecology, 48(5), pp. 1145–1154.  https://doi.org/10.1111/j.1365-2664.2011.02011.x

Gatti, L.V., Basso, L.S., Miller, J.B., Gloor, M., Gatti Domingues, L., Cassol, H.L.G., Tejada, G., Aragão, L.E.O.C., Nobre, C., Peters, W., Marani, L., Arai, E., Sanches, A.H., Corrêa, S.M., Anderson, L., Von Randow, C., Correia, C.S.C., Crispim, S.P. and Neves, R.A.L. (2021) ‘Amazonia as a carbon source linked to deforestation and climate change’, Nature, 595(7867), pp. 388–393.  https://doi.org/10.1038/s41586-021-03629-6

Gerten, D., Lucht, W., Ostberg, S., Heinke, J., Kowarsch, M., Kreft, H., Kundzewicz, Z.W., Rastgooy, J., Warren, R. and Schellnhuber, H.J. (2013) ‘Asynchronous exposure to global warming: freshwater resources and terrestrial ecosystems’, Environmental Research Letters, 8(3), p. 034032.  https://doi.org/10.1088/1748-9326/8/3/034032

Gimeno, L., Eiras-Barca, J., Durán-Quesada, A.M., Dominguez, F., van der Ent, R., Sodemann, H., Sánchez-Murillo, R., Nieto, R. and Kirchner, J.W. (2021) ‘The residence time of water vapour in the atmosphere’, Nature Reviews Earth & Environment, 2(8), pp. 558–569.  https://doi.org/10.1038/s43017-021-00181-9

Girardin, C.A.J., Jenkins, S., Seddon, N., Allen, M., Lewis, S.L., Wheeler, C.E., Griscom, B.W. and Malhi, Y. (2021) ‘Nature-based solutions can help cool the planet — if we act now’, Nature, 593(7858), pp. 191–194.  https://doi.org/10.1038/d41586-021-01241-2

Gold, Z.J., Pellegrini, A.F.A., Refsland, T.K., Andrioli, R.J., Bowles, M.L., Brockway, D.G., Burrows, N., Franco, A.C., Hallgren, S.W., Hobbie, S.E., Hoffmann, W.A., Kirkman, K.P., Reich, P.B., Savadogo, P., Silvério, D., Stephan, K., Strydom, T., Varner, J.M., Wade, D.D., Wills, A. and Staver, A.C. (2023) ‘Herbaceous vegetation responses to experimental fire in savannas and forests depend on biome and climate’, Ecology Letters, 26(7), pp. 1237–1246.  https://doi.org/10.1111/ele.14236

Goldberg, L., Lagomasino, D., Thomas, N. and Fatoyinbo, T. (2020) ‘Global declines in human-driven mangrove loss’, Global Change Biology, 26(10), pp. 5844–5855.  https://doi.org/10.1111/gcb.15275

Gómez-González, S., Ojeda, F. and Fernandes, P.M. (2018) ‘Portugal and Chile: Longing for sustainable forestry while rising from the ashes’, Environmental Science & Policy, 81, pp. 104–107.  https://doi.org/10.1016/j.envsci.2017.11.006

Good, P., Harper, A., Meesters, A., Robertson, E. and Betts, R. (2016) ‘Are strong fire–vegetation feedbacks needed to explain the spatial distribution of tropical tree cover?’, Global Ecology and Biogeography, 25(1), pp. 16–25.  https://doi.org/10.1111/geb.12380

Green, A.E., Unsworth, R.K.F., Chadwick, M.A. and Jones, P.J.S. (2021) ‘Historical Analysis Exposes Catastrophic Seagrass Loss for the United Kingdom’, Frontiers in Plant Science, 12.  https://www.frontiersin.org/articles/10.3389/fpls.2021.629962 (Accessed: 19 October 2023)

Guirado, E., Delgado-Baquerizo, M., Martínez-Valderrama, J., Tabik, S., Alcaraz-Segura, D. and Maestre, F.T. (2022) ‘Climate legacies drive the distribution and future restoration potential of dryland forests’, Nature Plants, 8(8), pp. 879–886.  https://doi.org/10.1038/s41477-022-01198-8

Hagger, V., Worthington, T.A., Lovelock, C.E., Adame, M.F., Amano, T., Brown, B.M., Friess, D.A., Landis, E., Mumby, P.J., Morrison, T.H., O’Brien, K.R., Wilson, K.A., Zganjar, C. and Saunders, M.I. (2022) ‘Drivers of global mangrove loss and gain in social-ecological systems’, Nature Communications, 13(1), p. 6373.  https://doi.org/10.1038/s41467-022-33962-x

Hammond, W.M., Williams, A.P., Abatzoglou, J.T., Adams, H.D., Klein, T., López, R., Sáenz-Romero, C., Hartmann, H., Breshears, D.D. and Allen, C.D. (2022) ‘Global field observations of tree die-off reveal hotter-drought fingerprint for Earth’s forests’, Nature Communications, 13(1), p. 1761.  https://doi.org/10.1038/s41467-022-29289-2

Hansen, M.C., Potapov, P.V., Moore, R., Hancher, M., Turubanova, S.A., Tyukavina, A., Thau, D., Stehman, S.V., Goetz, S.J., Loveland, T.R., Kommareddy, A., Egorov, A., Chini, L., Justice, C.O. and Townshend, J.R.G. (2013) ‘High-Resolution Global Maps of 21st-Century Forest Cover Change’, Science, 342(6160), pp. 850–853.  https://doi.org/10.1126/science.1244693

Hansson, A., Dargusch, P. and Shulmeister, J. (2021) ‘A review of modern treeline migration, the factors controlling it and the implications for carbon storage’, Journal of Mountain Science, 18(2), pp. 291–306.  https://doi.org/10.1007/s11629-020-6221-1

Heinze, C., Blenckner, T., Martins, H., Rusiecka, D., Döscher, R., Gehlen, M., Gruber, N., Holland, E., Hov, Ø., Joos, F., Matthews, J.B.R., Rødven, R. and Wilson, S. (2021) ‘The quiet crossing of ocean tipping points’, Proceedings of the National Academy of Sciences, 118(9), p. e2008478118.  https://doi.org/10.1073/pnas.2008478118

Hennenberg, K.J., Fischer, F., Kouadio, K., Goetze, D., Orthmann, B., Linsenmair, K.E., Jeltsch, F. and Porembski, S. (2006) ‘Phytomass and fire occurrence along forest–savanna transects in the Comoé National Park, Ivory Coast’, Journal of Tropical Ecology, 22(3), pp. 303–311.  https://doi.org/10.1017/S0266467405003007

Henson, S.A., Laufkötter, C., Leung, S., Giering, S.L.C., Palevsky, H.I. and Cavan, E.L. (2022) ‘Uncertain response of ocean biological carbon export in a changing world’, Nature Geoscience, 15(4), pp. 248–254.  https://doi.org/10.1038/s41561-022-00927-0

Herbert, E.R., Boon, P., Burgin, A.J., Neubauer, S.C., Franklin, R.B., Ardón, M., Hopfensperger, K.N., Lamers, L.P.M. and Gell, P. (2015) ‘A global perspective on wetland salinization: ecological consequences of a growing threat to freshwater wetlands’, Ecosphere, 6(10), p. art206.  https://doi.org/10.1890/ES14-00534.1

Herbert-Read, J.E., Thornton, A., Amon, D.J., Birchenough, S.N.R., Côté, I.M., Dias, M.P., Godley, B.J., Keith, S.A., McKinley, E., Peck, L.S., Calado, R., Defeo, O., Degraer, S., Johnston, E.L., Kaartokallio, H., Macreadie, P.I., Metaxas, A., Muthumbi, A.W.N., Obura, D.O., Paterson, D.M., Piola, A.R., Richardson, A.J., Schloss, I.R., Snelgrove, P.V.R., Stewart, B.D., Thompson, P.M., Watson, G.J., Worthington, T.A., Yasuhara, M. and Sutherland, W.J. (2022) ‘A global horizon scan of issues impacting marine and coastal biodiversity conservation’, Nature Ecology & Evolution, 6(9), pp. 1262–1270.  https://doi.org/10.1038/s41559-022-01812-0

Hessen, D.O., Andersen, T., Armstrong McKay, D., Kosten, S., Meerhoff, M., Pickard, A. and Spears, B. (2023) ‘Lake ecosystem tipping points and climate feedbacks’. Copernicus GmbH.  https://doi.org/10.5194/esd-2023-22

Hesterberg, S.G., Jackson, K. and Bell, S.S. (2022) ‘Climate drives coupled regime shifts across subtropical estuarine ecosystems’, Proceedings of the National Academy of Sciences, 119(33), p. e2121654119.  https://doi.org/10.1073/pnas.2121654119

Higgins, S.I., Bond, W.J. and Trollope, W.S.W. (2000) ‘Fire, Resprouting and Variability: A Recipe for Grass-Tree Coexistence in Savanna’, Journal of Ecology, 88(2), pp. 213–229.  https://www.jstor.org/stable/2648525 (Accessed: 17 October 2023)

Higgins, S.I., Conradi, T., Kruger, L.M., O’Hara, R.B. and Slingsby, J.A. (2023) ‘Limited climatic space for alternative ecosystem states in Africa’, Science, 380(6649), pp. 1038–1042.  https://doi.org/10.1126/science.add5190

Higgins, S.I. and Scheiter, S. (2012) ‘Atmospheric CO2 forces abrupt vegetation shifts locally, but not globally’, Nature, 488(7410), pp. 209–212.  https://doi.org/10.1038/nature11238

Hillebrand, H., Donohue, I., Harpole, W.S., Hodapp, D., Kucera, M., Lewandowska, A.M., Merder, J., Montoya, J.M. and Freund, J.A. (2020) ‘Thresholds for ecological responses to global change do not emerge from empirical data’, Nature Ecology & Evolution, 4(11), pp. 1502–1509.  https://doi.org/10.1038/s41559-020-1256-9

Hirota, M., Flores, B.M., Betts, R., Borma, L.S., Esquivel-Muelbert, A., Jakovac, C., Lapola, D.M., Montoya, E., Oliveira, R.S. and Sakschewski, B. (2021) ‘Chapter 24: Resilience of the Amazon forest to global changes: Assessing the risk of tipping points’, in Science Panel for the Amazon, Amazon Assessment Report 2021. 1st edn. Edited by C. Nobre, A. Encalada, E. Anderson, F. H. Roca Alcazar, M. Bustamante, C. Mena, M. Peña-Claros, G. Poveda, J. P. Rodriguez, S. Saleska, S. E. Trumbore, A. Val, L. Villa Nova, R. Abramovay, A. Alencar, A. C. Rodriguez Alzza, D. Armenteras, P. Artaxo, S. Athayde, H. T. Barretto Filho, J. Barlow, E. Berenguer, F. Bortolotto, F. D. A. Costa, M. H. Costa, N. Cuvi, P. Fearnside, J. Ferreira, B. M. Flores, S. Frieri, L. V. Gatti, J. M. Guayasamin, S. Hecht, M. Hirota, C. Hoorn, C. Josse, D. M. Lapola, C. Larrea, D. M. Larrea-Alcazar, Z. Lehm Ardaya, Y. Malhi, J. A. Marengo, J. Melack, M. Moraes R., P. Moutinho, M. R. Murmis, E. G. Neves, B. Paez, L. Painter, A. Ramos, M. C. Rosero-Peña, M. Schmink, P. Sist, H. Ter Steege, P. Val, H. Van Der Voort, M. Varese, and G. Zapata-Ríos. UN Sustainable Development Solutions Network (SDSN).  https://doi.org/10.55161/QPYS9758

Hirota, M., Holmgren, M., Van Nes, E.H. and Scheffer, M. (2011) ‘Global Resilience of Tropical Forest and Savanna to Critical Transitions’, Science, 334(6053), pp. 232–235.  https://doi.org/10.1126/science.1210657

Hlásny, T., König, L., Krokene, P., Lindner, M., Montagné-Huck, C., Müller, J., Qin, H., Raffa, K.F., Schelhaas, M.-J., Svoboda, M., Viiri, H. and Seidl, R. (2021) ‘Bark Beetle Outbreaks in Europe: State of Knowledge and Ways Forward for Management’, Current Forestry Reports, 7(3), pp. 138–165.  https://doi.org/10.1007/s40725-021-00142-x

Hock, K., Wolff, N.H., Ortiz, J.C., Condie, S.A., Anthony, K.R.N., Blackwell, P.G. and Mumby, P.J. (2017) ‘Connectivity and systemic resilience of the Great Barrier Reef’, PLOS Biology, 15(11), p. e2003355.  https://doi.org/10.1371/journal.pbio.2003355

Hodapp, D., Borer, E.T., Harpole, W.S., Lind, E.M., Seabloom, E.W., Adler, P.B., Alberti, J., Arnillas, C.A., Bakker, J.D., Biederman, L., Cadotte, M., Cleland, E.E., Collins, S., Fay, P.A., Firn, J., Hagenah, N., Hautier, Y., Iribarne, O., Knops, J.M.H., McCulley, R.L., MacDougall, A., Moore, J.L., Morgan, J.W., Mortensen, B., La Pierre, K.J., Risch, A.C., Schütz, M., Peri, P., Stevens, C.J., Wright, J. and Hillebrand, H. (2018) ‘Spatial heterogeneity in species composition constrains plant community responses to herbivory and fertilisation’, Ecology Letters, 21(9), pp. 1364–1371.  https://doi.org/10.1111/ele.13102

Hoegh-Guldberg, O., Jacob, D., Taylor, M., Bindi, M., Brown, S., Camilloni, I., Diedhiou, A., Djalante, R., Ebi, K.L., Engelbrecht, F., Guiot, J., Hijioka, Y., Mehrotra, S., Payne, A., Seneviratne, S.I., Thomas, A., Warren, R. and Zhou, G. (2018) ‘Impacts of 1.5oC Global Warming on Natural and Human Systems’, in Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. Cambridge, UK and New York, NY, USA: Cambridge University Press, pp. 175–312.  https://www.ipcc.ch/sr15/chapter/chapter-3/ (Accessed: 16 October 2023)

Hoffmann, W.A., Adasme, R., Haridasan, M., T. de Carvalho, M., Geiger, E.L., Pereira, M.A.B., Gotsch, S.G. and Franco, A.C. (2009) ‘Tree topkill, not mortality, governs the dynamics of savanna–forest boundaries under frequent fire in central Brazil’, Ecology, 90(5), pp. 1326–1337.  https://doi.org/10.1890/08-0741.1

Holling, C.S. (1973) ‘Resilience and Stability of Ecological Systems’, Annual Review of Ecology and Systematics, 4(1), pp. 1–23.  https://doi.org/10.1146/annurev.es.04.110173.000245

Holmgren, M., Hirota, M., van Nes, E.H. and Scheffer, M. (2013) ‘Effects of interannual climate variability on tropical tree cover’, Nature Climate Change, 3(8), pp. 755–758.  https://doi.org/10.1038/nclimate1906

Holmgren, M., Lin, C.-Y., Murillo, J.E., Nieuwenhuis, A., Penninkhof, J., Sanders, N., van Bart, T., van Veen, H., Vasander, H., Vollebregt, M.E. and Limpens, J. (2015) ‘Positive shrub–tree interactions facilitate woody encroachment in boreal peatlands’, Journal of Ecology, 103(1), pp. 58–66.  https://doi.org/10.1111/1365-2745.12331

Holmgren, M., López, B.C., Gutiérrez, J.R. and Squeo, F.A. (2006) ‘Herbivory and plant growth rate determine the success of El Niño Southern Oscillation-driven tree establishment in semiarid South America’, Global Change Biology, 12(12), pp. 2263–2271.  https://doi.org/10.1111/j.1365-2486.2006.01261.x

Holmgren, M. and Scheffer, M. (2001) ‘El Niño as a Window of Opportunity for the Restoration of Degraded Arid Ecosystems’, Ecosystems, 4(2), pp. 151–159.  https://doi.org/10.1007/s100210000065

Holmgren, M., Stapp, P., Dickman, C.R., Gracia, C., Graham, S., Gutiérrez, J.R., Hice, C., Jaksic, F., Kelt, D.A., Letnic, M., Lima, M., López, B.C., Meserve, P.L., Milstead, W.B., Polis, G.A., Previtali, M.A., Richter, M., Sabaté, S. and Squeo, F.A. (2006) ‘Extreme climatic events shape arid and semiarid ecosystems’, Frontiers in Ecology and the Environment, 4(2), pp. 87–95.  https://doi.org/10.1890/1540-9295(2006)004[0087:ECESAA]2.0.CO;2

Honda, E.A. and Durigan, G. (2016) ‘Woody encroachment and its consequences on hydrological processes in the savannah’, Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1703), p. 20150313.  https://doi.org/10.1098/rstb.2015.0313

Hopcroft, P.O. and Valdes, P.J. (2021) ‘Paleoclimate-conditioning reveals a North Africa land–atmosphere tipping point’, Proceedings of the National Academy of Sciences, 118(45), p. e2108783118.  https://doi.org/10.1073/pnas.2108783118

Horppila, J., Keskinen, S., Nurmesniemi, M., Nurminen, L., Pippingsköld, E., Rajala, S., Sainio, K. and Estlander, S. (2023) ‘Factors behind the threshold-like changes in lake ecosystems along a water colour gradient: The effects of dissolved organic carbon and iron on euphotic depth, mixing depth and phytoplankton biomass’, Freshwater Biology, 68(6), pp. 1031–1040.  https://doi.org/10.1111/fwb.14083

Houk, P., Yalon, A., Maxin, S., Starsinic, C., McInnis, A., Gouezo, M., Golbuu, Y. and van Woesik, R. (2020) ‘Predicting coral-reef futures from El Niño and Pacific Decadal Oscillation events’, Scientific Reports, 10(1), p. 7735.  https://doi.org/10.1038/s41598-020-64411-8

Huang, B., Hu, X., Fuglstad, G.-A., Zhou, X., Zhao, W. and Cherubini, F. (2020) ‘Predominant regional biophysical cooling from recent land cover changes in Europe’, Nature Communications, 11(1), p. 1066.  https://doi.org/10.1038/s41467-020-14890-0

Huang, J., Yu, H., Guan, X., Wang, G. and Guo, R. (2016) ‘Accelerated dryland expansion under climate change’, Nature Climate Change, 6(2), pp. 166–171.  https://doi.org/10.1038/nclimate2837

Hubau, W., Lewis, S.L., Phillips, O.L., Affum-Baffoe, K., Beeckman, H., Cuní-Sanchez, A., Daniels, A.K., Ewango, C.E.N., Fauset, S., Mukinzi, J.M., Sheil, D., Sonké, B., Sullivan, M.J.P., Sunderland, T.C.H., Taedoumg, H., Thomas, S.C., White, L.J.T., Abernethy, K.A., Adu-Bredu, S., Amani, C.A., Baker, T.R., Banin, L.F., Baya, F., Begne, S.K., Bennett, A.C., Benedet, F., Bitariho, R., Bocko, Y.E., Boeckx, P., Boundja, P., Brienen, R.J.W., Brncic, T., Chezeaux, E., Chuyong, G.B., Clark, C.J., Collins, M., Comiskey, J.A., Coomes, D.A., Dargie, G.C., de Haulleville, T., Kamdem, M.N.D., Doucet, J.-L., Esquivel-Muelbert, A., Feldpausch, T.R., Fofanah, A., Foli, E.G., Gilpin, M., Gloor, E., Gonmadje, C., Gourlet-Fleury, S., Hall, J.S., Hamilton, A.C., Harris, D.J., Hart, T.B., Hockemba, M.B.N., Hladik, A., Ifo, S.A., Jeffery, K.J., Jucker, T., Yakusu, E.K., Kearsley, E., Kenfack, D., Koch, A., Leal, M.E., Levesley, A., Lindsell, J.A., Lisingo, J., Lopez-Gonzalez, G., Lovett, J.C., Makana, J.-R., Malhi, Y., Marshall, A.R., Martin, J., Martin, E.H., Mbayu, F.M., Medjibe, V.P., Mihindou, V., Mitchard, E.T.A., Moore, S., Munishi, P.K.T., Bengone, N.N., Ojo, L., Ondo, F.E., Peh, K.S.-H., Pickavance, G.C., Poulsen, A.D., Poulsen, J.R., Qie, L., Reitsma, J., Rovero, F., Swaine, M.D., Talbot, J., Taplin, J., Taylor, D.M., Thomas, D.W., Toirambe, B., Mukendi, J.T., Tuagben, D., Umunay, P.M., van der Heijden, G.M.F., Verbeeck, H., Vleminckx, J., Willcock, S., Wöll, H., Woods, J.T. and Zemagho, L. (2020) ‘Asynchronous carbon sink saturation in African and Amazonian tropical forests’, Nature, 579(7797), pp. 80–87.  https://doi.org/10.1038/s41586-020-2035-0

Hughes, T.P., Anderson, K.D., Connolly, S.R., Heron, S.F., Kerry, J.T., Lough, J.M., Baird, A.H., Baum, J.K., Berumen, M.L., Bridge, T.C., Claar, D.C., Eakin, C.M., Gilmour, J.P., Graham, N.A.J., Harrison, H., Hobbs, J.-P.A., Hoey, A.S., Hoogenboom, M., Lowe, R.J., McCulloch, M.T., Pandolfi, J.M., Pratchett, M., Schoepf, V., Torda, G. and Wilson, S.K. (2018) ‘Spatial and temporal patterns of mass bleaching of corals in the Anthropocene’, Science, 359(6371), pp. 80–83.  https://doi.org/10.1126/science.aan8048

Hughes, T.P., Carpenter, S., Rockström, J., Scheffer, M. and Walker, B. (2013) ‘Multiscale regime shifts and planetary boundaries’, Trends in Ecology & Evolution, 28(7), pp. 389–395.  https://doi.org/10.1016/j.tree.2013.05.019

Hughes, T.P., Kerry, J.T., Álvarez-Noriega, M., Álvarez-Romero, J.G., Anderson, K.D., Baird, A.H., Babcock, R.C., Beger, M., Bellwood, D.R., Berkelmans, R., Bridge, T.C., Butler, I.R., Byrne, M., Cantin, N.E., Comeau, S., Connolly, S.R., Cumming, G.S., Dalton, S.J., Diaz-Pulido, G., Eakin, C.M., Figueira, W.F., Gilmour, J.P., Harrison, H.B., Heron, S.F., Hoey, A.S., Hobbs, J.-P.A., Hoogenboom, M.O., Kennedy, E.V., Kuo, C., Lough, J.M., Lowe, R.J., Liu, G., McCulloch, M.T., Malcolm, H.A., McWilliam, M.J., Pandolfi, J.M., Pears, R.J., Pratchett, M.S., Schoepf, V., Simpson, T., Skirving, W.J., Sommer, B., Torda, G., Wachenfeld, D.R., Willis, B.L. and Wilson, S.K. (2017) ‘Global warming and recurrent mass bleaching of corals’, Nature, 543(7645), pp. 373–377.  https://doi.org/10.1038/nature21707

Hughes, T.P., Kerry, J.T., Baird, A.H., Connolly, S.R., Dietzel, A., Eakin, C.M., Heron, S.F., Hoey, A.S., Hoogenboom, M.O., Liu, G., McWilliam, M.J., Pears, R.J., Pratchett, M.S., Skirving, W.J., Stella, J.S. and Torda, G. (2018) ‘Global warming transforms coral reef assemblages’, Nature, 556(7702), pp. 492–496.  https://doi.org/10.1038/s41586-018-0041-2

International Congress and Convention Association (ICCA) Consortium (2021) Territories of Life: 2021 Report. ICCA Consortium.  https://report.territoriesoflife.org/ (Accessed: 20 October 2023).

Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) (2019) Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services.  https://zenodo.org/records/6417333 (Accessed: 13 October 2023)

Intergovernmental Panel on Climate Change (IPCC) (2019) Climate Change and Land: IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems. Cambridge University Press.

IPCC (2022a) Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York, NY, USA: Cambridge University Press, p. 3056.  doi.org/10.1017/9781009325844

IPCC (2022b) Global Warming of 1.5°C: IPCC Special Report on Impacts of Global Warming of 1.5°C above Pre-industrial Levels in Context of Strengthening Response to Climate Change, Sustainable Development, and Efforts to Eradicate Poverty. Cambridge: Cambridge University Press.  https://doi.org/10.1017/9781009157940

Jackson, R.B., Jobbágy, E.G., Avissar, R., Roy, S.B., Barrett, D.J., Cook, C.W., Farley, K.A., le Maitre, D.C., McCarl, B.A. and Murray, B.C. (2005) ‘Trading Water for Carbon with Biological Carbon Sequestration’, Science, 310(5756), pp. 1944–1947.  https://doi.org/10.1126/science.1119282

Jackson, R.L., Gabric, A.J., Cropp, R. and Woodhouse, M.T. (2020) ‘Dimethylsulfide (DMS), marine biogenic aerosols and the ecophysiology of coral reefs’, Biogeosciences, 17(8), pp. 2181–2204.  https://doi.org/10.5194/bg-17-2181-2020

Jaeger, E.B. and Seneviratne, S.I. (2011) ‘Impact of soil moisture–atmosphere coupling on European climate extremes and trends in a regional climate model’, Climate Dynamics, 36(9), pp. 1919–1939.  https://doi.org/10.1007/s00382-010-0780-8

James, R.K., Keyzer, L.M., van de Velde, S.J., Herman, P.M.J., van Katwijk, M.M. and Bouma, T.J. (2023) ‘Climate change mitigation by coral reefs and seagrass beds at risk: How global change compromises coastal ecosystem services’, Science of The Total Environment, 857, p. 159576.  https://doi.org/10.1016/j.scitotenv.2022.159576

Jarvis, D.S. and Kulakowski, D. (2015) ‘Long-term history and synchrony of mountain pine beetle outbreaks in lodgepole pine forests’, Journal of Biogeography, 42(6), pp. 1029–1039.  https://doi.org/10.1111/jbi.12489.Jeppesen, E., Kristensen, P., Jensen, J.P., Søndergaard, M., Mortensen, E. and Lauridsen, T. (1991) ‘Recovery resilience following a reduction in external phosphorus loading of shallow, eutrophic Danish lakes: duration, regulating factors and methods for overcoming resilience’, Memorie dell’Istituto Italiano di Idrobiologia, 48, pp. 127–148.  https://www.academia.edu/12937212/Recovery_resilience_following_a_reduction_in_external_phosphorus_loading_of_shallow_eutrophic_Danish_lakes_duration_regulating_factors_and_methods_for_overcoming_resilience (Accessed: 19 October 2023)

Jeppesen, E., Søndergaard, M., Jensen, J.P., Havens, K.E., Anneville, O., Carvalho, L., Coveney, M.F., Deneke, R., Dokulil, M.T., Foy, B., Gerdeaux, D., Hampton, S.E., Hilt, S., Kangur, K., Köhler, J., Lammens, E.H. h. r., Lauridsen, T.L., Manca, M., Miracle, M.R., Moss, B., Nõges, P., Persson, G., Phillips, G., Portielje, R., Romo, S., Schelske, C.L., Straile, D., Tatrai, I., Willén, E. and Winder, M. (2005) ‘Lake responses to reduced nutrient loading – an analysis of contemporary long-term data from 35 case studies’, Freshwater Biology, 50(10), pp. 1747–1771.  https://doi.org/10.1111/j.1365-2427.2005.01415.x

Jimenez, J.A., Lugo, A.E. and Cintron, G. (1985) ‘Tree Mortality in Mangrove Forests’, Biotropica, 17(3), pp. 177–185.  https://doi.org/10.2307/2388214

Jiménez-Muñoz, J.C., Mattar, C., Barichivich, J., Santamaría-Artigas, A., Takahashi, K., Malhi, Y., Sobrino, J.A. and Schrier, G. van der (2016) ‘Record-breaking warming and extreme drought in the Amazon rainforest during the course of El Niño 2015–2016’, Scientific Reports, 6(1), p. 33130.  https://doi.org/10.1038/srep33130

Jónasdóttir, S.H., Visser, A.W., Richardson, K. and Heath, M.R. (2015) ‘Seasonal copepod lipid pump promotes carbon sequestration in the deep North Atlantic’, Proceedings of the National Academy of Sciences, 112(39), pp. 12122–12126.  https://doi.org/10.1073/pnas.1512110112

Jouffray, J.-B., Blasiak, R., Norström, A.V., Österblom, H. and Nyström, M. (2020) ‘The Blue Acceleration: The Trajectory of Human Expansion into the Ocean’, One Earth, 2(1), pp. 43–54.  https://doi.org/10.1016/j.oneear.2019.12.016

Kaijser, W., Kosten, S. and Hering, D. (2019) ‘Salinity tolerance of aquatic plants indicated by monitoring data from the Netherlands’, Aquatic Botany, 158, p. 103129.  https://doi.org/10.1016/j.aquabot.2019.103129

Karlsson, J., Byström, P., Ask, J., Ask, P., Persson, L. and Jansson, M. (2009) ‘Light limitation of nutrient-poor lake ecosystems’, Nature, 460(7254), pp. 506–509.  https://doi.org/10.1038/nature08179

Karp, A.T., Uno, K.T., Berke, M.A., Russell, J.M., Scholz, C.A., Marlon, J.R., Faith, J.T. and Staver, A.C. (2023) ‘Nonlinear rainfall effects on savanna fire activity across the African Humid Period’, Quaternary Science Reviews, 304, p. 107994.  https://doi.org/10.1016/j.quascirev.2023.107994

Kéfi, S., Rietkerk, M., Alados, C.L., Pueyo, Y., Papanastasis, V.P., ElAich, A. and de Ruiter, P.C. (2007) ‘Spatial vegetation patterns and imminent desertification in Mediterranean arid ecosystems’, Nature, 449(7159), pp. 213–217.  https://doi.org/10.1038/nature06111

Kéfi, S., Rietkerk, M., Roy, M., Franc, A., de Ruiter, P.C. and Pascual, M. (2011) ‘Robust scaling in ecosystems and the meltdown of patch size distributions before extinction’, Ecology Letters, 14(1), pp. 29–35.  https://doi.org/10.1111/j.1461-0248.2010.01553.x

Kéfi, S., Saade, C., Berlow, E.L., Cabral, J.S. and Fronhofer, E.A. (2022) ‘Scaling up our understanding of tipping points’, Philosophical Transactions of the Royal Society B: Biological Sciences, 377(1857), p. 20210386.  https://doi.org/10.1098/rstb.2021.0386

Keith, D.A., Ferrer-Paris, J.R., Nicholson, E., Bishop, M.J., Polidoro, B.A., Ramirez-Llodra, E., Tozer, M.G., Nel, J.L., Mac Nally, R., Gregr, E.J., Watermeyer, K.E., Essl, F., Faber-Langendoen, D., Franklin, J., Lehmann, C.E.R., Etter, A., Roux, D.J., Stark, J.S., Rowland, J.A., Brummitt, N.A., Fernandez-Arcaya, U.C., Suthers, I.M., Wiser, S.K., Donohue, I., Jackson, L.J., Pennington, R.T., Iliffe, T.M., Gerovasileiou, V., Giller, P., Robson, B.J., Pettorelli, N., Andrade, A., Lindgaard, A., Tahvanainen, T., Terauds, A., Chadwick, M.A., Murray, N.J., Moat, J., Pliscoff, P., Zager, I. and Kingsford, R.T. (2022) ‘A function-based typology for Earth’s ecosystems’, Nature, 610(7932), pp. 513–518.  https://doi.org/10.1038/s41586-022-05318-4

Kelly, S.J., Popova, E., Aksenov, Y., Marsh, R. and Yool, A. (2020) ‘They Came From the Pacific: How Changing Arctic Currents Could Contribute to an Ecological Regime Shift in the Atlantic Ocean’, Earth’s Future, 8(4), p. e2019EF001394.  https://doi.org/10.1029/2019EF001394

Kendrick, G.A., Nowicki, R.J., Olsen, Y.S., Strydom, S., Fraser, M.W., Sinclair, E.A., Statton, J., Hovey, R.K., Thomson, J.A., Burkholder, D.A., McMahon, K.M., Kilminster, K., Hetzel, Y., Fourqurean, J.W., Heithaus, M.R. and Orth, R.J. (2019) ‘A Systematic Review of How Multiple Stressors From an Extreme Event Drove Ecosystem-Wide Loss of Resilience in an Iconic Seagrass Community’, Frontiers in Marine Science, 6.  https://www.frontiersin.org/articles/10.3389/fmars.2019.00455 (Accessed: 19 October 2023)

Kolus, H.R., Huntzinger, D.N., Schwalm, C.R., Fisher, J.B., McKay, N., Fang, Y., Michalak, A.M., Schaefer, K., Wei, Y., Poulter, B., Mao, J., Parazoo, N.C. and Shi, X. (2019) ‘Land carbon models underestimate the severity and duration of drought’s impact on plant productivity’, Scientific Reports, 9(1), p. 2758.  https://doi.org/10.1038/s41598-019-39373-1

Kooperman, G.J., Chen, Y., Hoffman, F.M., Koven, C.D., Lindsay, K., Pritchard, M.S., Swann, A.L.S. and Randerson, J.T. (2018) ‘Forest response to rising CO2 drives zonally asymmetric rainfall change over tropical land’, Nature Climate Change, 8(5), pp. 434–440.  https://doi.org/10.1038/s41558-018-0144-7

Krauss, K.W., McKee, K.L., Lovelock, C.E., Cahoon, D.R., Saintilan, N., Reef, R. and Chen, L. (2014) ‘How mangrove forests adjust to rising sea level’, New Phytologist, 202(1), pp. 19–34.  https://doi.org/10.1111/nph.12605

Kukla, T., Ahlström, A., Maezumi, S.Y., Chevalier, M., Lu, Z., Winnick, M.J. and Chamberlain, C.P. (2021) ‘The resilience of Amazon tree cover to past and present drying’, Global and Planetary Change, 202, p. 103520.  https://doi.org/10.1016/j.gloplacha.2021.103520

Kulmatiski, A. and Beard, K.H. (2013) ‘Woody plant encroachment facilitated by increased precipitation intensity’, Nature Climate Change, 3(9), pp. 833–837.  https://doi.org/10.1038/nclimate1904

Kump, L.R., Kasting, J.F. and Crane, R.G. (1999) The Earth System. New Jersey: Prentice Hall

Kuntzemann, C.E., Whitman, E., Stralberg, D., Parisien, M.-A., Thompson, D.K. and Nielsen, S.E. (2023) ‘Peatlands promote fire refugia in boreal forests of northern Alberta, Canada’, Ecosphere, 14(5), p. e4510.  https://doi.org/10.1002/ecs2.4510

Lade, S.J., Wang-Erlandsson, L., Staal, A. and Rocha, J.C. (2021) ‘Empirical pressure-response relations can benefit assessment of safe operating spaces’, Nature Ecology & Evolution, 5(8), pp. 1078–1079.  https://doi.org/10.1038/s41559-021-01481-5

Langan, L., Higgins, S.I. and Scheiter, S. (2017) ‘Climate-biomes, pedo-biomes or pyro-biomes: which world view explains the tropical forest–savanna boundary in South America?’, Journal of Biogeography, 44(10), pp. 2319–2330.  https://doi.org/10.1111/jbi.13018

Lapola, D.M., Pinho, P., Barlow, J., Aragão, L.E.O.C., Berenguer, E., Carmenta, R., Liddy, H.M., Seixas, H., Silva, C.V.J., Silva-Junior, C.H.L., Alencar, A.A.C., Anderson, L.O., Armenteras, D., Brovkin, V., Calders, K., Chambers, J., Chini, L., Costa, M.H., Faria, B.L., Fearnside, P.M., Ferreira, J., Gatti, L., Gutierrez-Velez, V.H., Han, Z., Hibbard, K., Koven, C., Lawrence, P., Pongratz, J., Portela, B.T.T., Rounsevell, M., Ruane, A.C., Schaldach, R., da Silva, S.S., von Randow, C. and Walker, W.S. (2023) ‘The drivers and impacts of Amazon forest degradation’, Science, 379(6630), p. eabp8622.  https://doi.org/10.1126/science.abp8622

Laurion, I., Vincent, W.F., MacIntyre, S., Retamal, L., Dupont, C., Francus, P. and Pienitz, R. (2010) ‘Variability in greenhouse gas emissions from permafrost thaw ponds’, Limnology and Oceanography, 55(1), pp. 115–133.  https://doi.org/10.4319/lo.2010.55.1.0115

Le Nohaïc, M., Ross, C.L., Cornwall, C.E., Comeau, S., Lowe, R., McCulloch, M.T. and Schoepf, V. (2017) ‘Marine heatwave causes unprecedented regional mass bleaching of thermally resistant corals in northwestern Australia’, Scientific Reports, 7(1), p. 14999.  https://doi.org/10.1038/s41598-017-14794-y

Leakey, A.D.B., Ainsworth, E.A., Bernacchi, C.J., Rogers, A., Long, S.P. and Ort, D.R. (2009) ‘Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE’, Journal of Experimental Botany, 60(10), pp. 2859–2876.  https://doi.org/10.1093/jxb/erp096

Lenton, T.M., Held, H., Kriegler, E., Hall, J.W., Lucht, W., Rahmstorf, S. and Schellnhuber, H.J. (2008) ‘Tipping elements in the Earth’s climate system’, Proceedings of the National Academy of Sciences, 105(6), pp. 1786–1793.  https://doi.org/10.1073/pnas.0705414105

Lenton, T.M. and Williams, H.T.P. (2013) ‘On the origin of planetary-scale tipping points’, Trends in Ecology & Evolution, 28(7), pp. 380–382.  https://doi.org/10.1016/j.tree.2013.06.001

Levine, N.M., Zhang, K., Longo, M., Baccini, A., Phillips, O.L., Lewis, S.L., Alvarez-Dávila, E., Segalin de Andrade, A.C., Brienen, R.J.W., Erwin, T.L., Feldpausch, T.R., Monteagudo Mendoza, A.L., Nuñez Vargas, P., Prieto, A., Silva-Espejo, J.E., Malhi, Y. and Moorcroft, P.R. (2016) ‘Ecosystem heterogeneity determines the ecological resilience of the Amazon to climate change’, Proceedings of the National Academy of Sciences, 113(3), pp. 793–797.  https://doi.org/10.1073/pnas.1511344112

Li, Y., Baker, J.C.A., Brando, P.M., Hoffman, F.M., Lawrence, D.M., Morton, D.C., Swann, A.L.S., Uribe, M. del R. and Randerson, J.T. (2023) ‘Future increases in Amazonia water stress from CO2 physiology and deforestation’, Nature Water, 1(9), pp. 769–777.  https://doi.org/10.1038/s44221-023-00128-y

Lian, X., Piao, S., Chen, A., Huntingford, C., Fu, B., Li, L.Z.X., Huang, J., Sheffield, J., Berg, A.M., Keenan, T.F., McVicar, T.R., Wada, Y., Wang, X., Wang, T., Yang, Y. and Roderick, M.L. (2021) ‘Multifaceted characteristics of dryland aridity changes in a warming world’, Nature Reviews Earth & Environment, 2(4), pp. 232–250.  https://doi.org/10.1038/s43017-021-00144-0

Ling, S.D., Scheibling, R.E., Rassweiler, A., Johnson, C.R., Shears, N., Connell, S.D., Salomon, A.K., Norderhaug, K.M., Pérez-Matus, A., Hernández, J.C., Clemente, S., Blamey, L.K., Hereu, B., Ballesteros, E., Sala, E., Garrabou, J., Cebrian, E., Zabala, M., Fujita, D. and Johnson, L.E. (2015) ‘Global regime shift dynamics of catastrophic sea urchin overgrazing’, Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1659), p. 20130269.  https://doi.org/10.1098/rstb.2013.0269

Liu, B., Liang, Y., He, H.S., Liu, Z., Ma, T. and Wu, M.M. (2022) ‘Wildfire affects boreal forest resilience through post-fire recruitment in Northeastern China’, Ecological Indicators, 145, p. 109705.  https://doi.org/10.1016/j.ecolind.2022.109705

Liu, T., Chen, Dean, Yang, L., Meng, J., Wang, Z., Ludescher, J., Fan, J., Yang, S., Chen, Deliang, Kurths, J., Chen, X., Havlin, S. and Schellnhuber, H.J. (2023) ‘Teleconnections among tipping elements in the Earth system’, Nature Climate Change, 13(1), pp. 67–74.  https://doi.org/10.1038/s41558-022-01558-4

Lloret, F. and Batllori, E. (2021) ‘Climate-Induced Global Forest Shifts due to Heatwave-Drought’, in J.G. Canadell and R.B. Jackson (eds) Ecosystem Collapse and Climate Change. Cham: Springer International Publishing (Ecological Studies), pp. 155–186.  https://doi.org/10.1007/978-3-030-71330-0_7

Lloyd, J., Bird, M.I., Vellen, L., Miranda, A.C., Veenendaal, E.M., Djagbletey, G., Miranda, H.S., Cook, G. and Farquhar, G.D. (2008) ‘Contributions of woody and herbaceous vegetation to tropical savanna ecosystem productivity: a quasi-global estimate’, Tree Physiology, 28(3), pp. 451–468.  https://doi.org/10.1093/treephys/28.3.451

Loehle, C., Li, B.-L. and Sundell, R.C. (1996) ‘Forest spread and phase transitions at forest-prairie ecotones in Kansas, U.S.A.’, Landscape Ecology, 11(4), pp. 225–235.  https://doi.org/10.1007/BF02071813

Longo, M., Knox, R.G., Levine, N.M., Alves, L.F., Bonal, D., Camargo, P.B., Fitzjarrald, D.R., Hayek, M.N., Restrepo-Coupe, N., Saleska, S.R., da Silva, R., Stark, S.C., Tapajós, R.P., Wiedemann, K.T., Zhang, K., Wofsy, S.C. and Moorcroft, P.R. (2018) ‘Ecosystem heterogeneity and diversity mitigate Amazon forest resilience to frequent extreme droughts’, New Phytologist, 219(3), pp. 914–931.  https://doi.org/10.1111/nph.15185

Lovelock, C.E., Cahoon, D.R., Friess, D.A., Guntenspergen, G.R., Krauss, K.W., Reef, R., Rogers, K., Saunders, M.L., Sidik, F., Swales, A., Saintilan, N., Thuyen, L.X. and Triet, T. (2015) ‘The vulnerability of Indo-Pacific mangrove forests to sea-level rise’, Nature, 526(7574), pp. 559–563.  https://doi.org/10.1038/nature15538

Lovelock, C.E., Feller, I.C., Reef, R., Hickey, S. and Ball, M.C. (2017) ‘Mangrove dieback during fluctuating sea levels’, Scientific Reports, 7(1), p. 1680.  https://doi.org/10.1038/s41598-017-01927-6

Lovelock, C.E., Fourqurean, J.W. and Morris, J.T. (2017) ‘Modeled CO2 Emissions from Coastal Wetland Transitions to Other Land Uses: Tidal Marshes, Mangrove Forests, and Seagrass Beds’, Frontiers in Marine Science, 4.  https://www.frontiersin.org/articles/10.3389/fmars.2017.00143 (Accessed: 19 October 2023)

Lu, M. and Hedin, L.O. (2019) ‘Global plant–symbiont organization and emergence of biogeochemical cycles resolved by evolution-based trait modelling’, Nature Ecology & Evolution, 3(2), pp. 239–250.  https://doi.org/10.1038/s41559-018-0759-0

Lugo, A.E. (1980) ‘Mangrove Ecosystems: Successional or Steady State?’, Biotropica, 12(2), pp. 65–72.  https://doi.org/10.2307/2388158

Ma, L., Yang, L., Chang, Q., Wang, S., Guan, C., Chen, N. and Zhao, C. (2023) ‘Alternative tree-cover states of dryland ecosystems: Inconsistencies between global and continental scales’, Agricultural and Forest Meteorology, 337, p. 109497.  https://doi.org/10.1016/j.agrformet.2023.109497

Maberly, S.C., O’Donnell, R.A., Woolway, R.I., Cutler, M.E.J., Gong, M., Jones, I.D., Merchant, C.J., Miller, C.A., Politi, E., Scott, E.M., Thackeray, S.J. and Tyler, A.N. (2020) ‘Global lake thermal regions shift under climate change’, Nature Communications, 11(1), p. 1232.  https://doi.org/10.1038/s41467-020-15108-z

Maciejewski, K., Biggs, R. and Rocha, J.C. (2019) ‘Regime shifts in social-ecological systems’, in Handbook on Resilience of Socio-Technical Systems. Edward Elgar Publishing, pp. 274–295.  https://china.elgaronline.com/edcollchap/edcoll/9781786439369/9781786439369.00021.xml (Accessed: 13 October 2023)

MacLeod, K., Koch, M.S., Johnson, C.R. and Madden, C.J. (2023) ‘Resilience of recruiting seagrass (Thalassia testudinum) to porewater H2S in Florida Bay’, Aquatic Botany, 187, p. 103650.  https://doi.org/10.1016/j.aquabot.2023.103650

Macreadie, P.I., Costa, M.D.P., Atwood, T.B., Friess, D.A., Kelleway, J.J., Kennedy, H., Lovelock, C.E., Serrano, O. and Duarte, C.M. (2021) ‘Blue carbon as a natural climate solution’, Nature Reviews Earth & Environment, 2(12), pp. 826–839.  https://doi.org/10.1038/s43017-021-00224-1

Maestre, F.T., Delgado-Baquerizo, M., Jeffries, T.C., Eldridge, D.J., Ochoa, V., Gozalo, B., Quero, J.L., García-Gómez, M., Gallardo, A., Ulrich, W., Bowker, M.A., Arredondo, T., Barraza-Zepeda, C., Bran, D., Florentino, A., Gaitán, J., Gutiérrez, J.R., Huber-Sannwald, E., Jankju, M., Mau, R.L., Miriti, M., Naseri, K., Ospina, A., Stavi, I., Wang, D., Woods, N.N., Yuan, X., Zaady, E. and Singh, B.K. (2015) ‘Increasing aridity reduces soil microbial diversity and abundance in global drylands’, Proceedings of the National Academy of Sciences, 112(51), pp. 15684–15689.  https://doi.org/10.1073/pnas.1516684112

Malhi, Y., Gardner, T.A., Goldsmith, G.R., Silman, M.R. and Zelazowski, P. (2014) ‘Tropical Forests in the Anthropocene’, Annual Review of Environment and Resources, 39(1), pp. 125–159.  https://doi.org/10.1146/annurev-environ-030713-155141

Malik, A., Fensholt, R. and Mertz, O. (2015) ‘Economic Valuation of Mangroves for Comparison with Commercial Aquaculture in South Sulawesi, Indonesia’, Forests, 6(9), pp. 3028–3044.  https://doi.org/10.3390/f6093028

Marbà, N., Jordà, G., Bennett, S. and Duarte, C.M. (2022) ‘Seagrass Thermal Limits and Vulnerability to Future Warming’, Frontiers in Marine Science, 9.  https://www.frontiersin.org/articles/10.3389/fmars.2022.860826 (Accessed: 19 October 2023)

Marengo, J.A., Nobre, C.A., Tomasella, J., Oyama, M.D., Oliveira, G.S. de, Oliveira, R. de, Camargo, H., Alves, L.M. and Brown, I.F. (2008) ‘The Drought of Amazonia in 2005’, Journal of Climate, 21(3), pp. 495–516.  https://doi.org/10.1175/2007JCLI1600.1

Marengo, J.A., Tomasella, J., Alves, L.M., Soares, W.R. and Rodriguez, D.A. (2011) ‘The drought of 2010 in the context of historical droughts in the Amazon region’, Geophysical Research Letters, 38(12).  https://doi.org/10.1029/2011GL047436

Martin, R., Schlüter, M. and Blenckner, T. (2020) ‘The importance of transient social dynamics for restoring ecosystems beyond ecological tipping points’, Proceedings of the National Academy of Sciences, 117(5), pp. 2717–2722.  https://doi.org/10.1073/pnas.1817154117

Maxwell, S.L., Fuller, R.A., Brooks, T.M. and Watson, J.E.M. (2016) ‘Biodiversity: The ravages of guns, nets and bulldozers’, Nature, 536(7615), pp. 143–145.  https://doi.org/10.1038/536143a

May, R.M. (1977) ‘Thresholds and breakpoints in ecosystems with a multiplicity of stable states’, Nature, 269(5628), pp. 471–477.  https://doi.org/10.1038/269471a0

Mayer, M., Prescott, C.E., Abaker, W.E.A., Augusto, L., Cécillon, L., Ferreira, G.W.D., James, J., Jandl, R., Katzensteiner, K., Laclau, J.-P., Laganière, J., Nouvellon, Y., Paré, D., Stanturf, J.A., Vanguelova, E.I. and Vesterdal, L. (2020) ‘Tamm Review: Influence of forest management activities on soil organic carbon stocks: A knowledge synthesis’, Forest Ecology and Management, 466, p. 118127.  https://doi.org/10.1016/j.foreco.2020.118127

Mayor, A.G., Bautista, S., Rodriguez, F. and Kéfi, S. (2019) ‘Connectivity-Mediated Ecohydrological Feedbacks and Regime Shifts in Drylands’, Ecosystems, 22(7), pp. 1497–1511.  https://doi.org/10.1007/s10021-019-00366-w

Mayor, Á.G., Kéfi, S., Bautista, S., Rodríguez, F., Cartení, F. and Rietkerk, M. (2013) ‘Feedbacks between vegetation pattern and resource loss dramatically decrease ecosystem resilience and restoration potential in a simple dryland model’, Landscape Ecology, 28(5), pp. 931–942.  https://doi.org/10.1007/s10980-013-9870-4

Mayor, A.G., Valdecantos, A., Vallejo, V.R., Keizer, J.J., Bloem, J., Baeza, J., González-Pelayo, O., Machado, A.I. and de Ruiter, P.C. (2016) ‘Fire-induced pine woodland to shrubland transitions in Southern Europe may promote shifts in soil fertility’, Science of The Total Environment, 573, pp. 1232–1241.  https://doi.org/10.1016/j.scitotenv.2016.03.243

Mayor, D.J., Cook, K.B., Anderson, T.R., Belcher, A., Jenkins, Lindeque, P., Tarling, G.A. and Pond, D. (2020) ‘Marine Copepods, The Wildebeest of the Ocean’, Frontiers for Young Minds.  https://kids.frontiersin.org/articles/10.3389/frym.2020.00018 (Accessed: 20 October 2023)

McKenzie, L.J., Nordlund, L.M., Jones, B.L., Cullen-Unsworth, L.C., Roelfsema, C. and Unsworth, R.K.F. (2020) ‘The global distribution of seagrass meadows’, Environmental Research Letters, 15(7), p. 074041.  https://doi.org/10.1088/1748-9326/ab7d06

McPherson, M.L., Finger, D.J.I., Houskeeper, H.F., Bell, T.W., Carr, M.H., Rogers-Bennett, L. and Kudela, R.M. (2021) ‘Large-scale shift in the structure of a kelp forest ecosystem co-occurs with an epizootic and marine heatwave’, Communications Biology, 4(1), pp. 1–9.  https://doi.org/10.1038/s42003-021-01827-6

McWhorter, J.K., Halloran, P.R., Roff, G., Skirving, W.J., Perry, C.T. and Mumby, P.J. (2022) ‘The importance of 1.5°C warming for the Great Barrier Reef’, Global Change Biology, 28(4), pp. 1332–1341.  https://doi.org/10.1111/gcb.15994

Meerhoff, M., Audet, J., Davidson, T.A., De Meester, L., Hilt, S., Kosten, S., Liu, Z., Mazzeo, N., Paerl, H., Scheffer, M. and Jeppesen, E. (2022) ‘Feedback between climate change and eutrophication: revisiting the allied attack concept and how to strike back’, Inland Waters, 12(2), pp. 187–204.  https://doi.org/10.1080/20442041.2022.2029317

Mekonnen, Z.A., Riley, W.J., Berner, L.T., Bouskill, N.J., Torn, M.S., Iwahana, G., Breen, A.L., Myers-Smith, I.H., Criado, M.G., Liu, Y., Euskirchen, E.S., Goetz, S.J., Mack, M.C. and Grant, R.F. (2021) ‘Arctic tundra shrubification: a review of mechanisms and impacts on ecosystem carbon balance’, Environmental Research Letters, 16(5), p. 053001.  https://doi.org/10.1088/1748-9326/abf28b

Menéndez, P., Losada, I.J., Torres-Ortega, S., Narayan, S. and Beck, M.W. (2020) ‘The Global Flood Protection Benefits of Mangroves’, Scientific Reports, 10(1), p. 4404.  https://doi.org/10.1038/s41598-020-61136-6

Messager, M.L., Lehner, B., Grill, G., Nedeva, I. and Schmitt, O. (2016) ‘Estimating the volume and age of water stored in global lakes using a geo-statistical approach’, Nature Communications, 7(1), p. 13603.  https://doi.org/10.1038/ncomms13603

Meyer, S.T., Ptacnik, R., Hillebrand, H., Bessler, H., Buchmann, N., Ebeling, A., Eisenhauer, N., Engels, C., Fischer, M., Halle, S., Klein, A.-M., Oelmann, Y., Roscher, C., Rottstock, T., Scherber, C., Scheu, S., Schmid, B., Schulze, E.-D., Temperton, V.M., Tscharntke, T., Voigt, W., Weigelt, A., Wilcke, W. and Weisser, W.W. (2018) ‘Biodiversity–multifunctionality relationships depend on identity and number of measured functions’, Nature Ecology & Evolution, 2(1), pp. 44–49.  https://doi.org/10.1038/s41559-017-0391-4

Middleton, N., Thomas, D. and UNEP (1992) World Atlas of Desertification. Edward Arnold :  https://digitallibrary.un.org/record/246740 (Accessed: 18 October 2023)

Möllmann, C., Cormon, X., Funk, S., Otto, S.A., Schmidt, J.O., Schwermer, H., Sguotti, C., Voss, R. and Quaas, M. (2021) ‘Tipping point realized in cod fishery’, Scientific Reports, 11(1), p. 14259.  https://doi.org/10.1038/s41598-021-93843-z

Möllmann, C. and Diekmann, R. (2012) ‘Chapter 4 – Marine Ecosystem Regime Shifts Induced by Climate and Overfishing: A Review for the Northern Hemisphere’, in G. Woodward, U. Jacob, and E.J. O’Gorman (eds) Advances in Ecological Research. Academic Press (Global Change in Multispecies Systems Part 2), pp. 303–347.  https://doi.org/10.1016/B978-0-12-398315-2.00004-1

Monteith, D.T., Henrys, P.A., Hruška, J., de Wit, H.A., Krám, P., Moldan, F., Posch, M., Räike, A., Stoddard, J.L., Shilland, E.M., Pereira, M.G. and Evans, C.D. (2023) ‘Long-term rise in riverine dissolved organic carbon concentration is predicted by electrolyte solubility theory’, Science Advances, 9(3), p. eade3491.  https://doi.org/10.1126/sciadv.ade3491

Montoya, J.M., Donohue, I. and Pimm, S.L. (2018) ‘Planetary Boundaries for Biodiversity: Implausible Science, Pernicious Policies’, Trends in Ecology & Evolution, 33(2), pp. 71–73.  https://doi.org/10.1016/j.tree.2017.10.004

Mora, J.L. and Lázaro, R. (2013) ‘Evidence of a threshold in soil erodibility generating differences in vegetation development and resilience between two semiarid grasslands’, Journal of Arid Environments, 89, pp. 57–66.  https://doi.org/10.1016/j.jaridenv.2012.10.005

Muñiz-Castillo, A.I., Rivera-Sosa, A., Chollett, I., Eakin, C.M., Andrade-Gómez, L., McField, M. and Arias-González, J.E. (2019) ‘Three decades of heat stress exposure in Caribbean coral reefs: a new regional delineation to enhance conservation’, Scientific Reports, 9(1), p. 11013.  https://doi.org/10.1038/s41598-019-47307-0

Nemani, R.R., Keeling, C.D., Hashimoto, H., Jolly, W.M., Piper, S.C., Tucker, C.J., Myneni, R.B. and Running, S.W. (2003) ‘Climate-Driven Increases in Global Terrestrial Net Primary Production from 1982 to 1999’, Science, 300(5625), pp. 1560–1563.  https://doi.org/10.1126/science.1082750

Nes, E.H. van, Arani, B.M.S., Staal, A., Bolt, B. van der, Flores, B.M., Bathiany, S. and Scheffer, M. (2016) ‘What Do You Mean, “Tipping Point”?’, Trends in Ecology & Evolution, 31(12), pp. 902–904.  https://doi.org/10.1016/j.tree.2016.09.011

Nes, E.H. van, Staal, A., Hantson, S., Holmgren, M., Pueyo, S., Bernardi, R.E., Flores, B.M., Xu, C. and Scheffer, M. (2018) ‘Fire forbids fifty-fifty forest’, PLOS ONE, 13(1), p. e0191027.  https://doi.org/10.1371/journal.pone.0191027

Neukermans, G., Oziel, L. and Babin, M. (2018) ‘Increased intrusion of warming Atlantic water leads to rapid expansion of temperate phytoplankton in the Arctic’, Global Change Biology, 24(6), pp. 2545–2553.  https://doi.org/10.1111/gcb.14075

Nicholson, S.E., Tucker, C.J. and Ba, M.B. (1998) ‘Desertification, Drought, and Surface Vegetation: An Example from the West African Sahel’, Bulletin of the American Meteorological Society, 79(5), pp. 815–830.  https://doi.org/10.1175/1520-0477(1998)079<0815:DDASVA>2.0.CO;2

Nieto-Quintano, P., Mitchard, E.T.A., Odende, R., Batsa Mouwembe, M.A., Rayden, T. and Ryan, C.M. (2018) ‘The mesic savannas of the Bateke Plateau: carbon stocks and floristic composition’, Biotropica, 50(6), pp. 868–880.  https://doi.org/10.1111/btp.12606

Nobre, C.A., Sampaio, G., Borma, L.S., Castilla-Rubio, J.C., Silva, J.S. and Cardoso, M. (2016) ‘Land-use and climate change risks in the Amazon and the need of a novel sustainable development paradigm’, Proceedings of the National Academy of Sciences, 113(39), pp. 10759–10768.  https://doi.org/10.1073/pnas.1605516113.

Norberg, J., Blenckner, T., Cornell, S.E., Petchey, O.L. and Hillebrand, H. (2022) ‘Failures to disagree are essential for environmental science to effectively influence policy development’, Ecology Letters, 25(5), pp. 1075–1093.  https://doi.org/10.1111/ele.13984

Norby, R.J. and Zak, D.R. (2011) ‘Ecological Lessons from Free-Air CO2 Enrichment (FACE) Experiments’, Annual Review of Ecology, Evolution, and Systematics, 42(1), pp. 181–203.  https://doi.org/10.1146/annurev-ecolsys-102209-144647

Nordlund, L.M., Koch, E.W., Barbier, E.B. and Creed, J.C. (2016) ‘Seagrass Ecosystem Services and Their Variability across Genera and Geographical Regions’, PLOS ONE, 11(10), p. e0163091.  https://doi.org/10.1371/journal.pone.0163091

Nowicki, M., DeVries, T. and Siegel, D.A. (2022) ‘Quantifying the Carbon Export and Sequestration Pathways of the Ocean’s Biological Carbon Pump’, Global Biogeochemical Cycles, 36(3), p. e2021GB007083.  https://doi.org/10.1029/2021GB007083

Nowicki, R.J., Thomson, J.A., Burkholder, D.A., Fourqurean, J.W. and Heithaus, M.R. (2017) ‘Predicting seagrass recovery times and their implications following an extreme climate event’, Marine Ecology Progress Series, 567, pp. 79–93.  https://doi.org/10.3354/meps12029

Noy-Meir, I. (1975) ‘Stability of Grazing Systems: An Application of Predator-Prey Graphs’, Journal of Ecology, 63(2), pp. 459–481.  https://doi.org/10.2307/2258730

Nyström, M., Folke, C., Moberg, F., Nyström, M., Folke, C., Moberg, F., Nyström, M., Folke, C. and Moberg, F. (2000) ‘Coral reef disturbance and resilience in a human-dominated environment’, Trends in Ecology & Evolution, 15(10), pp. 413–417.  https://doi.org/10.1016/S0169-5347(00)01948-0

Obura, D., Gudka, M., Samoilys, M., Osuka, K., Mbugua, J., Keith, D.A., Porter, S., Roche, R., van Hooidonk, R., Ahamada, S., Araman, A., Karisa, J., Komakoma, J., Madi, M., Ravinia, I., Razafindrainibe, H., Yahya, S. and Zivane, F. (2022) ‘Vulnerability to collapse of coral reef ecosystems in the Western Indian Ocean’, Nature Sustainability, 5(2), pp. 104–113.  https://doi.org/10.1038/s41893-021-00817-0

Ockenden, M.C., Hollaway, M.J., Beven, K.J., Collins, A.L., Evans, R., Falloon, P.D., Forber, K.J., Hiscock, K.M., Kahana, R., Macleod, C.J.A., Tych, W., Villamizar, M.L., Wearing, C., Withers, P.J.A., Zhou, J.G., Barker, P.A., Burke, S., Freer, J.E., Johnes, P.J., Snell, M.A., Surridge, B.W.J. and Haygarth, P.M. (2017) ‘Major agricultural changes required to mitigate phosphorus losses under climate change’, Nature Communications, 8(1), p. 161.  https://doi.org/10.1038/s41467-017-00232-0

Olefeldt, D., Hovemyr, M., Kuhn, M.A., Bastviken, D., Bohn, T.J., Connolly, J., Crill, P., Euskirchen, E.S., Finkelstein, S.A., Genet, H., Grosse, G., Harris, L.I., Heffernan, L., Helbig, M., Hugelius, G., Hutchins, R., Juutinen, S., Lara, M.J., Malhotra, A., Manies, K., McGuire, A.D., Natali, S.M., O’Donnell, J.A., Parmentier, F.-J.W., Räsänen, A., Schädel, C., Sonnentag, O., Strack, M., Tank, S.E., Treat, C., Varner, R.K., Virtanen, T., Warren, R.K. and Watts, J.D. (2021) ‘The Boreal–Arctic Wetland and Lake Dataset (BAWLD)’, Earth System Science Data, 13(11), pp. 5127–5149.  https://doi.org/10.5194/essd-13-5127-2021

Oliveira, R.S., Eller, C.B., Barros, F. de V., Hirota, M., Brum, M. and Bittencourt, P. (2021) ‘Linking plant hydraulics and the fast–slow continuum to understand resilience to drought in tropical ecosystems’, New Phytologist, 230(3), pp. 904–923.  https://doi.org/10.1111/nph.17266

Opdal, A.F., Andersen, T., Hessen, D.O., Lindemann, C. and Aksnes, D.L. (2023) ‘Tracking freshwater browning and coastal water darkening from boreal forests to the Arctic Ocean’, Limnology and Oceanography Letters, 8(4), pp. 611–619.  https://doi.org/10.1002/lol2.10320

Osman, M.B., Tierney, J.E., Zhu, J., Tardif, R., Hakim, G.J., King, J. and Poulsen, C.J. (2021) ‘Globally resolved surface temperatures since the Last Glacial Maximum’, Nature, 599(7884), pp. 239–244.  https://doi.org/10.1038/s41586-021-03984-4

Österblom, H., Hansson, S., Larsson, U., Hjerne, O., Wulff, F., Elmgren, R. and Folke, C. (2007) ‘Human-induced Trophic Cascades and Ecological Regime Shifts in the Baltic Sea’, Ecosystems, 10(6), pp. 877–889.  https://doi.org/10.1007/s10021-007-9069-0

Oziel, L., Baudena, A., Ardyna, M., Massicotte, P., Randelhoff, A., Sallée, J.-B., Ingvaldsen, R.B., Devred, E. and Babin, M. (2020) ‘Faster Atlantic currents drive poleward expansion of temperate phytoplankton in the Arctic Ocean’, Nature Communications, 11(1), p. 1705.  https://doi.org/10.1038/s41467-020-15485-5.

Pan, Y., Birdsey, R.A., Fang, J., Houghton, R., Kauppi, P.E., Kurz, W.A., Phillips, O.L., Shvidenko, A., Lewis, S.L., Canadell, J.G., Ciais, P., Jackson, R.B., Pacala, S.W., McGuire, A.D., Piao, S., Rautiainen, A., Sitch, S. and Hayes, D. (2011) ‘A Large and Persistent Carbon Sink in the World’s Forests’, Science, 333(6045), pp. 988–993.  https://doi.org/10.1126/science.1201609

Parry, I.M., Ritchie, P.D.L. and Cox, P.M. (2022) ‘Evidence of localised Amazon rainforest dieback in CMIP6 models’, Earth System Dynamics, 13(4), pp. 1667–1675.  https://doi.org/10.5194/esd-13-1667-2022

Pauchard, A., García, R.A., Peña, E., González, C., Cavieres, L.A. and Bustamante, R.O. (2008) ‘Positive feedbacks between plant invasions and fire regimes: Teline monspessulana (L.) K. Koch (Fabaceae) in central Chile’, Biological Invasions, 10(4), pp. 547–553.  https://doi.org/10.1007/s10530-007-9151-8

Pausata, F.S.R., Gaetani, M., Messori, G., Berg, A., Souza, D.M. de, Sage, R.F. and deMenocal, P.B. (2020) ‘The Greening of the Sahara: Past Changes and Future Implications’, One Earth, 2(3), pp. 235–250.  https://doi.org/10.1016/j.oneear.2020.03.002

Peng, C., Ma, Z., Lei, X., Zhu, Q., Chen, H., Wang, W., Liu, S., Li, W., Fang, X. and Zhou, X. (2011) ‘A drought-induced pervasive increase in tree mortality across Canada’s boreal forests’, Nature Climate Change, 1(9), pp. 467–471.  https://doi.org/10.1038/nclimate1293

Peñuelas, J., Ciais, P., Canadell, J.G., Janssens, I.A., Fernández-Martínez, M., Carnicer, J., Obersteiner, M., Piao, S., Vautard, R. and Sardans, J. (2017) ‘Shifting from a fertilization-dominated to a warming-dominated period’, Nature Ecology & Evolution, 1(10), pp. 1438–1445.  https://doi.org/10.1038/s41559-017-0274-8

Perry, C.T., Murphy, G.N., Kench, P.S., Smithers, S.G., Edinger, E.N., Steneck, R.S. and Mumby, P.J. (2013) ‘Caribbean-wide decline in carbonate production threatens coral reef growth’, Nature Communications, 4(1), p. 1402.  https://doi.org/10.1038/ncomms2409

Phillips, O.L., Aragão, L.E.O.C., Lewis, S.L., Fisher, J.B., Lloyd, J., López-González, G., Malhi, Y., Monteagudo, A., Peacock, J., Quesada, C.A., van der Heijden, G., Almeida, S., Amaral, I., Arroyo, L., Aymard, G., Baker, T.R., Bánki, O., Blanc, L., Bonal, D., Brando, P., Chave, J., de Oliveira, Á.C.A., Cardozo, N.D., Czimczik, C.I., Feldpausch, T.R., Freitas, M.A., Gloor, E., Higuchi, N., Jiménez, E., Lloyd, G., Meir, P., Mendoza, C., Morel, A., Neill, D.A., Nepstad, D., Patiño, S., Peñuela, M.C., Prieto, A., Ramírez, F., Schwarz, M., Silva, J., Silveira, M., Thomas, A.S., Steege, H. ter, Stropp, J., Vásquez, R., Zelazowski, P., Dávila, E.A., Andelman, S., Andrade, A., Chao, K.-J., Erwin, T., Di Fiore, A., C., E.H., Keeling, H., Killeen, T.J., Laurance, W.F., Cruz, A.P., Pitman, N.C.A., Vargas, P.N., Ramírez-Angulo, H., Rudas, A., Salamão, R., Silva, N., Terborgh, J. and Torres-Lezama, A. (2009) ‘Drought Sensitivity of the Amazon Rainforest’, Science, 323(5919), pp. 1344–1347.  https://doi.org/10.1126/science.1164033

Phillips, O.L., van der Heijden, G., Lewis, S.L., López-González, G., Aragão, L.E.O.C., Lloyd, J., Malhi, Y., Monteagudo, A., Almeida, S., Dávila, E.A., Amaral, I., Andelman, S., Andrade, A., Arroyo, L., Aymard, G., Baker, T.R., Blanc, L., Bonal, D., de Oliveira, Á.C.A., Chao, K.-J., Cardozo, N.D., da Costa, L., Feldpausch, T.R., Fisher, J.B., Fyllas, N.M., Freitas, M.A., Galbraith, D., Gloor, E., Higuchi, N., Honorio, E., Jiménez, E., Keeling, H., Killeen, T.J., Lovett, J.C., Meir, P., Mendoza, C., Morel, A., Vargas, P.N., Patiño, S., Peh, K.S.-H., Cruz, A.P., Prieto, A., Quesada, C.A., Ramírez, F., Ramírez, H., Rudas, A., Salamão, R., Schwarz, M., Silva, J., Silveira, M., Ferry Slik, J.W., Sonké, B., Thomas, A.S., Stropp, J., Taplin, J.R.D., Vásquez, R. and Vilanova, E. (2010) ‘Drought–mortality relationships for tropical forests’, New Phytologist, 187(3), pp. 631–646.  https://doi.org/10.1111/j.1469-8137.2010.03359.x

Pierret, A. and Lacombe, G. (2018) ‘Hydrologic regulation of plant rooting depth: Breakthrough or observational conundrum?’, Proceedings of the National Academy of Sciences, 115(12), pp. E2669–E2670.  https://doi.org/10.1073/pnas.1801721115

Pillay, R., Venter, M., Aragon-Osejo, J., González-del-Pliego, P., Hansen, A.J., Watson, J.E. and Venter, O. (2022) ‘Tropical forests are home to over half of the world’s vertebrate species’, Frontiers in Ecology and the Environment, 20(1), pp. 10–15.  https://doi.org/10.1002/fee.2420

Pinsky, M.L., Jensen, O.P., Ricard, D. and Palumbi, S.R. (2011) ‘Unexpected patterns of fisheries collapse in the world’s oceans’, Proceedings of the National Academy of Sciences, 108(20), pp. 8317–8322.  https://doi.org/10.1073/pnas.1015313108

Plaisance, L., Caley, M.J., Brainard, R.E. and Knowlton, N. (2011) ‘The Diversity of Coral Reefs: What Are We Missing?’, PLOS ONE, 6(10), p. e25026.  https://doi.org/10.1371/journal.pone.0025026

Portmann, R., Beyerle, U., Davin, E., Fischer, E.M., De Hertog, S. and Schemm, S. (2022) ‘Global forestation and deforestation affect remote climate via adjusted atmosphere and ocean circulation’, Nature Communications, 13(1), p. 5569.  https://doi.org/10.1038/s41467-022-33279-9

Potapov, P., Hansen, M.C., Laestadius, L., Turubanova, S., Yaroshenko, A., Thies, C., Smith, W., Zhuravleva, I., Komarova, A., Minnemeyer, S. and Esipova, E. (2017) ‘The last frontiers of wilderness: Tracking loss of intact forest landscapes from 2000 to 2013’, Science Advances, 3(1), p. e1600821.  https://doi.org/10.1126/sciadv.1600821

Pranindita, A., Wang-Erlandsson, L., Fetzer, I. and Teuling, A.J. (2022) ‘Moisture recycling and the potential role of forests as moisture source during European heatwaves’, Climate Dynamics, 58(1), pp. 609–624.  https://doi.org/10.1007/s00382-021-05921-7

Prăvălie, R., Bandoc, G., Patriche, C. and Sternberg, T. (2019) ‘Recent changes in global drylands: Evidences from two major aridity databases’, CATENA, 178, pp. 209–231.  https://doi.org/10.1016/j.catena.2019.03.016

Prince, S.D., Wessels, K.J., Tucker, C.J. and Nicholson, S.E. (2007) ‘Desertification in the Sahel: a reinterpretation of a reinterpretation’, Global Change Biology, 13(7), pp. 1308–1313.  https://doi.org/10.1111/j.1365-2486.2007.01356.x

Rahel, F.J. and Olden, J.D. (2008) ‘Assessing the Effects of Climate Change on Aquatic Invasive Species’, Conservation Biology, 22(3), pp. 521–533.  https://doi.org/10.1111/j.1523-1739.2008.00950.x

Rao, M.P., Davi, N.K., Magney, T.S., Andreu-Hayles, L., Nachin, B., Suran, B., Varuolo-Clarke, A.M., Cook, B.I., D’Arrigo, R.D., Pederson, N., Odrentsen, L., Rodríguez-Catón, M., Leland, C., Burentogtokh, J., Gardner, W.R.M. and Griffin, K.L. (2023) ‘Approaching a thermal tipping point in the Eurasian boreal forest at its southern margin’, Communications Earth & Environment, 4(1), pp. 1–10.  https://doi.org/10.1038/s43247-023-00910-6

regimeshifts.org (no date) Regime Shifts DataBase.  https://www.regimeshifts.org/ (Accessed: 13 October 2023)

Reich, P.B., Bermudez, R., Montgomery, R.A., Rich, R.L., Rice, K.E., Hobbie, S.E. and Stefanski, A. (2022a) ‘Even modest climate change may lead to major transitions in boreal forests’, Nature, 608(7923), pp. 540–545.  https://doi.org/10.1038/s41586-022-05076-3

Reich, P.B., Bermudez, R., Montgomery, R.A., Rich, R.L., Rice, K.E., Hobbie, S.E. and Stefanski, A. (2022b) ‘Even modest climate change may lead to major transitions in boreal forests’, Nature, 608(7923), pp. 540–545.  https://doi.org/10.1038/s41586-022-05076-3

Reid, P.C. and Beaugrand, G. (2012) ‘Global synchrony of an accelerating rise in sea surface temperature’, Journal of the Marine Biological Association of the United Kingdom, 92(7), pp. 1435–1450.  https://doi.org/10.1017/S0025315412000549

Reynolds, J.F., Smith, D.M.S., Lambin, E.F., Turner, B.L., Mortimore, M., Batterbury, S.P.J., Downing, T.E., Dowlatabadi, H., Fernández, R.J., Herrick, J.E., Huber-Sannwald, E., Jiang, H., Leemans, R., Lynam, T., Maestre, F.T., Ayarza, M. and Walker, B. (2007) ‘Global Desertification: Building a Science for Dryland Development’, Science, 316(5826), pp. 847–851.  https://doi.org/10.1126/science.1131634

Reynolds, S.A. and Aldridge, D.C. (2021) ‘Global impacts of invasive species on the tipping points of shallow lakes’, Global Change Biology, 27(23), pp. 6129–6138.  https://doi.org/10.1111/gcb.15893

Richards, D.R. and Friess, D.A. (2016) ‘Rates and drivers of mangrove deforestation in Southeast Asia, 2000–2012’, Proceedings of the National Academy of Sciences, 113(2), pp. 344–349.  https://doi.org/10.1073/pnas.1510272113

Rietkerk, M., Bastiaansen, R., Banerjee, S., van de Koppel, J., Baudena, M. and Doelman, A. (2021) ‘Evasion of tipping in complex systems through spatial pattern formation’, Science, 374(6564), p. eabj0359.  https://doi.org/10.1126/science.abj0359

Rietkerk, M., Ketner, P., Burger, J., Hoorens, B. and Olff, H. (2000) ‘Multiscale soil and vegetation patchiness along a gradient of herbivore impact in a semi-arid grazing system in West Africa’, Plant Ecology, 148(2), pp. 207–224.  https://doi.org/10.1023/A:1009828432690

Riina, O.H., Rodrigo Duno de Stefano, Gerardo Aymard, Ricarda (2006) ‘Flora and Vegetation of the Venezuelan Llanos: A Review’, in Neotropical Savannas and Seasonally Dry Forests. CRC Press.

Rillig, M.C., van der Heijden, M.G.A., Berdugo, M., Liu, Y.-R., Riedo, J., Sanz-Lazaro, C., Moreno-Jiménez, E., Romero, F., Tedersoo, L. and Delgado-Baquerizo, M. (2023) ‘Increasing the number of stressors reduces soil ecosystem services worldwide’, Nature Climate Change, 13(5), pp. 478–483.  https://doi.org/10.1038/s41558-023-01627-2

Rocha, J.C., Peterson, G.D. and Biggs, R. (2015) ‘Regime Shifts in the Anthropocene: Drivers, Risks, and Resilience’, PLOS ONE, 10(8), p. e0134639.  https://doi.org/10.1371/journal.pone.0134639

Rockström, J., Beringer, T., Hole, D., Griscom, B., Mascia, M.B., Folke, C. and Creutzig, F. (2021) ‘We need biosphere stewardship that protects carbon sinks and builds resilience’, Proceedings of the National Academy of Sciences, 118(38), p. e2115218118.  https://doi.org/10.1073/pnas.2115218118

Rockström, J., Richardson, K., Steffen, W. and Mace, G. (2018) ‘Planetary Boundaries: Separating Fact from Fiction. A Response to Montoya et al.’, Trends in Ecology & Evolution, 33(4), pp. 233–234.  https://doi.org/10.1016/j.tree.2018.01.010

Rodríguez, F., Mayor, Á.G., Rietkerk, M. and Bautista, S. (2018) ‘A null model for assessing the cover-independent role of bare soil connectivity as indicator of dryland functioning and dynamics’, Ecological Indicators, 94, pp. 512–519.  https://doi.org/10.1016/j.ecolind.2017.10.023

Rogeau, M.-P., Barber, Q.E. and Parisien, M.-A. (2018) ‘Effect of Topography on Persistent Fire Refugia of the Canadian Rocky Mountains’, Forests, 9(6), p. 285.  https://doi.org/10.3390/f9060285

Romero-Uribe, H.M., López-Portillo, J., Reverchon, F. and Hernández, M.E. (2022) ‘Effect of degradation of a black mangrove forest on seasonal greenhouse gas emissions’, Environmental Science and Pollution Research, 29(8), pp. 11951–11965.  https://doi.org/10.1007/s11356-021-16597-1

Rosentreter, J.A., Laruelle, G.G., Bange, H.W., Bianchi, T.S., Busecke, J.J.M., Cai, W.-J., Eyre, B.D., Forbrich, I., Kwon, E.Y., Maavara, T., Moosdorf, N., Najjar, R.G., Sarma, V.V.S.S., Van Dam, B. and Regnier, P. (2023) ‘Coastal vegetation and estuaries are collectively a greenhouse gas sink’, Nature Climate Change, 13(6), pp. 579–587.  https://doi.org/10.1038/s41558-023-01682-9

Rotbarth, R., Van Nes, E.H., Scheffer, M., Jepsen, J.U., Vindstad, O.P.L., Xu, C. and Holmgren, M. (2023) ‘Northern expansion is not compensating for southern declines in North American boreal forests’, Nature Communications, 14(1), p. 3373.  https://doi.org/10.1038/s41467-023-39092-2

Ruslan, N.F.N., Goh, H.C., Hattam, C., Edwards-Jones, A. and Moh, H.H. (2022) ‘Mangrove ecosystem services: Contribution to the well-being of the coastal communities in Klang Islands’, Marine Policy, 144, p. 105222.  https://doi.org/10.1016/j.marpol.2022.105222

Sabatini, F.M., Keeton, W.S., Lindner, M., Svoboda, M., Verkerk, P.J., Bauhus, J., Bruelheide, H., Burrascano, S., Debaive, N., Duarte, I., Garbarino, M., Grigoriadis, N., Lombardi, F., Mikoláš, M., Meyer, P., Motta, R., Mozgeris, G., Nunes, L., Ódor, P., Panayotov, M., Ruete, A., Simovski, B., Stillhard, J., Svensson, J., Szwagrzyk, J., Tikkanen, O.-P., Vandekerkhove, K., Volosyanchuk, R., Vrska, T., Zlatanov, T. and Kuemmerle, T. (2020) ‘Protection gaps and restoration opportunities for primary forests in Europe’, Diversity and Distributions, 26(12), pp. 1646–1662.  https://doi.org/10.1111/ddi.13158

Safranyik, L., Carroll, A.L., Régnière, J., Langor, D.W., Riel, W.G., Shore, T.L., Peter, B., Cooke, B.J., Nealis, V.G. and Taylor, S.W. (2010) ‘Potential for range expansion of mountain pine beetle into the boreal forest of North America’, The Canadian Entomologist, 142(5), pp. 415–442.  https://doi.org/10.4039/n08-CPA01

Saintilan, N., Horton, B., Törnqvist, T.E., Ashe, E.L., Khan, N.S., Schuerch, M., Perry, C., Kopp, R.E., Garner, G.G., Murray, N., Rogers, K., Albert, S., Kelleway, J., Shaw, T.A., Woodroffe, C.D., Lovelock, C.E., Goddard, M.M., Hutley, L.B., Kovalenko, K., Feher, L. and Guntenspergen, G. (2023) ‘Widespread retreat of coastal habitat is likely at warming levels above 1.5 °C’, Nature, 621(7977), pp. 112–119.  https://doi.org/10.1038/s41586-023-06448-z

Saintilan, N., Khan, N.S., Ashe, E., Kelleway, J.J., Rogers, K., Woodroffe, C.D. and Horton, B.P. (2020) ‘Thresholds of mangrove survival under rapid sea level rise’, Science, 368(6495), pp. 1118–1121.  https://doi.org/10.1126/science.aba2656

Sakschewski, B., von Bloh, W., Drüke, M., Sörensson, A.A., Ruscica, R., Langerwisch, F., Billing, M., Bereswill, S., Hirota, M., Oliveira, R.S., Heinke, J. and Thonicke, K. (2021) ‘Variable tree rooting strategies are key for modelling the distribution, productivity and evapotranspiration of tropical evergreen forests’, Biogeosciences, 18(13), pp. 4091–4116.  https://doi.org/10.5194/bg-18-4091-2021

Salazar, L.F. and Nobre, C.A. (2010) ‘Climate change and thresholds of biome shifts in Amazonia’, Geophysical Research Letters, 37(17).  https://doi.org/10.1029/2010GL043538

Salvatteci, R., Field, D., Gutiérrez, D., Baumgartner, T., Ferreira, V., Ortlieb, L., Sifeddine, A., Grados, D. and Bertrand, A. (2018) ‘Multifarious anchovy and sardine regimes in the Humboldt Current System during the last 150 years’, Global Change Biology, 24(3), pp. 1055–1068.  https://doi.org/10.1111/gcb.13991

Salvatteci, R., Schneider, R.R., Galbraith, E., Field, D., Blanz, T., Bauersachs, T., Crosta, X., Martinez, P., Echevin, V., Scholz, F. and Bertrand, A. (2022) ‘Smaller fish species in a warm and oxygen-poor Humboldt Current system’, Science, 375(6576), pp. 101–104.  https://doi.org/10.1126/science.abj0270

Samhouri, J.F., Levin, P.S. and Ainsworth, C.H. (2010) ‘Identifying Thresholds for Ecosystem-Based Management’, PLOS ONE, 5(1), p. e8907.  https://doi.org/10.1371/journal.pone.0008907

Sampaio, G., Shimizu, M.H., Guimarães-Júnior, C.A., Alexandre, F., Guatura, M., Cardoso, M., Domingues, T.F., Rammig, A., von Randow, C., Rezende, L.F.C. and Lapola, D.M. (2021) ‘CO2 physiological effect can cause rainfall decrease as strong as large-scale deforestation in the Amazon’, Biogeosciences, 18(8), pp. 2511–2525.  https://doi.org/10.5194/bg-18-2511-2021

Sankaran, M., Hanan, N.P., Scholes, R.J., Ratnam, J., Augustine, D.J., Cade, B.S., Gignoux, J., Higgins, S.I., Le Roux, X., Ludwig, F., Ardo, J., Banyikwa, F., Bronn, A., Bucini, G., Caylor, K.K., Coughenour, M.B., Diouf, A., Ekaya, W., Feral, C.J., February, E.C., Frost, P.G.H., Hiernaux, P., Hrabar, H., Metzger, K.L., Prins, H.H.T., Ringrose, S., Sea, W., Tews, J., Worden, J. and Zambatis, N. (2005) ‘Determinants of woody cover in African savannas’, Nature, 438(7069), pp. 846–849.  https://doi.org/10.1038/nature04070

Santana-Falcón, Y., Yamamoto, A., Lenton, A., Jones, C.D., Burger, F.A., John, J.G., Tjiputra, J., Schwinger, J., Kawamiya, M., Frölicher, T.L., Ziehn, T. and Séférian, R. (2023) ‘Irreversible loss in marine ecosystem habitability after a temperature overshoot’, Communications Earth & Environment, 4(1), pp. 1–14.  https://doi.org/10.1038/s43247-023-01002-1

Save Maldives Campaign and Neykurendhoo Island Council (2020) Report for #SaveNeykurendhooKandoofaa for activities funded by the Commonwealth Human Ecology Council (CHEC)

Scheffer, M., Bascompte, J., Brock, W.A., Brovkin, V., Carpenter, S.R., Dakos, V., Held, H., van Nes, E.H., Rietkerk, M. and Sugihara, G. (2009) ‘Early-warning signals for critical transitions’, Nature, 461(7260), pp. 53–59.  https://doi.org/10.1038/nature08227

Scheffer, M., Carpenter, S., Foley, J.A., Folke, C. and Walker, B. (2001) ‘Catastrophic shifts in ecosystems’, Nature, 413(6856), pp. 591–596.  https://doi.org/10.1038/35098000

Scheffer, M., Hirota, M., Holmgren, M., Van Nes, E.H. and Chapin, F.S. (2012) ‘Thresholds for boreal biome transitions’, Proceedings of the National Academy of Sciences, 109(52), pp. 21384–21389.  https://doi.org/10.1073/pnas.1219844110

Scheffer, M., Hosper, S.H., Meijer, M.-L., Moss, B. and Jeppesen, E. (1993) ‘Alternative equilibria in shallow lakes’, Trends in Ecology & Evolution, 8(8), pp. 275–279.  https://doi.org/10.1016/0169-5347(93)90254-M

Scheffer, M. and van Nes, E.H. (2007) ‘Shallow lakes theory revisited: various alternative regimes driven by climate, nutrients, depth and lake size’, Hydrobiologia, 584(1), pp. 455–466.  https://doi.org/10.1007/s10750-007-0616-7

Schlesinger, W.H., Reynolds, J.F., Cunningham, G.L., Huenneke, L.F., Jarrell, W.M., Virginia, R.A. and Whitford, W.G. (1990) ‘Biological Feedbacks in Global Desertification’, Science, 247(4946), pp. 1043–1048.  https://doi.org/10.1126/science.247.4946.1043

Schorn, S., Ahmerkamp, S., Bullock, E., Weber, M., Lott, C., Liebeke, M., Lavik, G., Kuypers, M.M.M., Graf, J.S. and Milucka, J. (2022) ‘Diverse methylotrophic methanogenic archaea cause high methane emissions from seagrass meadows’, Proceedings of the National Academy of Sciences, 119(9), p. e2106628119.  https://doi.org/10.1073/pnas.2106628119

Schröder, A., Persson, L. and De Roos, A.M. (2005) ‘Direct experimental evidence for alternative stable states: a review’, Oikos, 110(1), pp. 3–19.  https://doi.org/10.1111/j.0030-1299.2005.13962.x

Schumacher, D.L., Keune, J., Dirmeyer, P. and Miralles, D.G. (2022) ‘Drought self-propagation in drylands due to land–atmosphere feedbacks’, Nature Geoscience, 15(4), pp. 262–268.  https://doi.org/10.1038/s41561-022-00912-7

Schwartzlose, R.A., Alheit, J., Bakun, A., Baumgartner, T.R., Cloete, R., Crawford, R.J.M., Fletcher, W.J., Green-Ruiz, Y., Hagen, E., Kawasaki, T., Lluch-Belda, D., Lluch-Cota, S.E., MacCall, A.D., Matsuura, Y., Nevárez-Martínez, M.O., Parrish, R.H., Roy, C., Serra, R., Shust, K.V., Ward, M.N. and Zuzunaga, J.Z. (1999) ‘Worldwide large-scale fluctuations of sardine and anchovy populations’, South African Journal of Marine Science, 21(1), pp. 289–347.  https://doi.org/10.2989/025776199784125962

Seidl, R., Thom, D., Kautz, M., Martin-Benito, D., Peltoniemi, M., Vacchiano, G., Wild, J., Ascoli, D., Petr, M., Honkaniemi, J., Lexer, M.J., Trotsiuk, V., Mairota, P., Svoboda, M., Fabrika, M., Nagel, T.A. and Reyer, C.P.O. (2017) ‘Forest disturbances under climate change’, Nature Climate Change, 7(6), pp. 395–402.  https://doi.org/10.1038/nclimate3303

Seneviratne, S.I., Corti, T., Davin, E.L., Hirschi, M., Jaeger, E.B., Lehner, I., Orlowsky, B. and Teuling, A.J. (2010) ‘Investigating soil moisture–climate interactions in a changing climate: A review’, Earth-Science Reviews, 99(3), pp. 125–161.  https://doi.org/10.1016/j.earscirev.2010.02.004

Senf, C., Buras, A., Zang, C.S., Rammig, A. and Seidl, R. (2020) ‘Excess forest mortality is consistently linked to drought across Europe’, Nature Communications, 11(1), p. 6200.  https://doi.org/10.1038/s41467-020-19924-1

Serrano, O., Gómez-López, D.I., Sánchez-Valencia, L., Acosta-Chaparro, A., Navas-Camacho, R., González-Corredor, J., Salinas, C., Masque, P., Bernal, C.A. and Marbà, N. (2021) ‘Seagrass blue carbon stocks and sequestration rates in the Colombian Caribbean’, Scientific Reports, 11(1), p. 11067.  https://doi.org/10.1038/s41598-021-90544-5

Setter, R.O., Franklin, E.C. and Mora, C. (2022) ‘Co-occurring anthropogenic stressors reduce the timeframe of environmental viability for the world’s coral reefs’, PLOS Biology, 20(10), p. e3001821.  https://doi.org/10.1371/journal.pbio.3001821

Sguotti, C., Blöcker, A.M., Färber, L., Blanz, B., Cormier, R., Diekmann, R., Letschert, J., Rambo, H., Stollberg, N., Stelzenmüller, V., Stier, A.C. and Möllmann, C. (2022) ‘Irreversibility of regime shifts in the North Sea’, Frontiers in Marine Science, 9.  https://www.frontiersin.org/articles/10.3389/fmars.2022.945204 (Accessed: 20 October 2023)

Sguotti, C., Otto, S.A., Frelat, R., Langbehn, T.J., Ryberg, M.P., Lindegren, M., Durant, J.M., Chr. Stenseth, N. and Möllmann, C. (2019) ‘Catastrophic dynamics limit Atlantic cod recovery’, Proceedings of the Royal Society B: Biological Sciences, 286(1898), p. 20182877.  https://doi.org/10.1098/rspb.2018.2877

Shanahan, T.M., McKay, N.P., Hughen, K.A., Overpeck, J.T., Otto-Bliesner, B., Heil, C.W., King, J., Scholz, C.A. and Peck, J. (2015) ‘The time-transgressive termination of the African Humid Period’, Nature Geoscience, 8(2), pp. 140–144.  https://doi.org/10.1038/ngeo2329

Sheppard, C., Sheppard, A. and Fenner, D. (2020) ‘Coral mass mortalities in the Chagos Archipelago over 40 years: Regional species and assemblage extinctions and indications of positive feedbacks’, Marine Pollution Bulletin, 154, p. 111075.  https://doi.org/10.1016/j.marpolbul.2020.111075

Short, F.T., Kosten, S., Morgan, P.A., Malone, S. and Moore, G.E. (2016) ‘Impacts of climate change on submerged and emergent wetland plants’, Aquatic Botany, 135, pp. 3–17.  https://doi.org/10.1016/j.aquabot.2016.06.006

Silvério, D.V., Brando, P.M., Balch, J.K., Putz, F.E., Nepstad, D.C., Oliveira-Santos, C. and Bustamante, M.M.C. (2013) ‘Testing the Amazon savannization hypothesis: fire effects on invasion of a neotropical forest by native cerrado and exotic pasture grasses’, Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1619), p. 20120427.  https://doi.org/10.1098/rstb.2012.0427

Sim, L.L., Chambers, J.M. and Davis, J.A. (2006) ‘Ecological regime shifts in salinised wetland systems. I. Salinity thresholds for the loss of submerged macrophytes’, Hydrobiologia, 573(1), pp. 89–107.  https://doi.org/10.1007/s10750-006-0267-0

Singh, C., Wang-Erlandsson, L., Fetzer, I., Rockström, J. and Ent, R. van der (2020) ‘Rootzone storage capacity reveals drought coping strategies along rainforest-savanna transitions’, Environmental Research Letters, 15(12), p. 124021.  https://doi.org/10.1088/1748-9326/abc377

Sitters, J., Holmgren, M., Stoorvogel, J.J. and López, B.C. (2012) ‘Rainfall-Tuned Management Facilitates Dry Forest Recovery’, Restoration Ecology, 20(1), pp. 33–42.  https://doi.org/10.1111/j.1526-100X.2010.00761.x

Slik, J.W.F., Arroyo-Rodríguez, V., Aiba, S.-I., Alvarez-Loayza, P., Alves, L.F., Ashton, P., Balvanera, P., Bastian, M.L., Bellingham, P.J., van den Berg, E., Bernacci, L., da Conceição Bispo, P., Blanc, L., Böhning-Gaese, K., Boeckx, P., Bongers, F., Boyle, B., Bradford, M., Brearley, F.Q., Breuer-Ndoundou Hockemba, M., Bunyavejchewin, S., Calderado Leal Matos, D., Castillo-Santiago, M., Catharino, E.L.M., Chai, S.-L., Chen, Y., Colwell, R.K., Chazdon, R.L., Clark, C., Clark, D.B., Clark, D.A., Culmsee, H., Damas, K., Dattaraja, H.S., Dauby, G., Davidar, P., DeWalt, S.J., Doucet, J.-L., Duque, A., Durigan, G., Eichhorn, K.A.O., Eisenlohr, P.V., Eler, E., Ewango, C., Farwig, N., Feeley, K.J., Ferreira, L., Field, R., de Oliveira Filho, A.T., Fletcher, C., Forshed, O., Franco, G., Fredriksson, G., Gillespie, T., Gillet, J.-F., Amarnath, G., Griffith, D.M., Grogan, J., Gunatilleke, N., Harris, D., Harrison, R., Hector, A., Homeier, J., Imai, N., Itoh, A., Jansen, P.A., Joly, C.A., de Jong, B.H.J., Kartawinata, K., Kearsley, E., Kelly, D.L., Kenfack, D., Kessler, M., Kitayama, K., Kooyman, R., Larney, E., Laumonier, Y., Laurance, S., Laurance, W.F., Lawes, M.J., Amaral, I.L. do, Letcher, S.G., Lindsell, J., Lu, X., Mansor, A., Marjokorpi, A., Martin, E.H., Meilby, H., Melo, F.P.L., Metcalfe, D.J., Medjibe, V.P., Metzger, J.P., Millet, J., Mohandass, D., Montero, J.C., de Morisson Valeriano, M., Mugerwa, B., Nagamasu, H., Nilus, R., Ochoa-Gaona, S., Onrizal, Page, N., Parolin, P., Parren, M., Parthasarathy, N., Paudel, E., Permana, A., Piedade, M.T.F., Pitman, N.C.A., Poorter, L., Poulsen, A.D., Poulsen, J., Powers, J., Prasad, R.C., Puyravaud, J.-P., Razafimahaimodison, J.-C., Reitsma, J., dos Santos, J.R., Roberto Spironello, W., Romero-Saltos, H., Rovero, F., Rozak, A.H., Ruokolainen, K., Rutishauser, E., Saiter, F., Saner, P., Santos, B.A., Santos, F., Sarker, S.K., Satdichanh, M., Schmitt, C.B., Schöngart, J., Schulze, M., Suganuma, M.S., Sheil, D., da Silva Pinheiro, E., Sist, P., Stevart, T., Sukumar, R., Sun, I.-F., Sunderland, T., Suresh, H.S., Suzuki, E., Tabarelli, M., Tang, J., Targhetta, N., Theilade, I., Thomas, D.W., Tchouto, P., Hurtado, J., Valencia, R., van Valkenburg, J.L.C.H., Van Do, T., Vasquez, R., Verbeeck, H., Adekunle, V., Vieira, S.A., Webb, C.O., Whitfeld, T., Wich, S.A., Williams, J., Wittmann, F., Wöll, H., Yang, X., Adou Yao, C.Y., Yap, S.L., Yoneda, T., Zahawi, R.A., Zakaria, R., Zang, R., de Assis, R.L., Garcia Luize, B. and Venticinque, E.M. (2015) ‘An estimate of the number of tropical tree species’, Proceedings of the National Academy of Sciences, 112(24), pp. 7472–7477.  https://doi.org/10.1073/pnas.1423147112

Smit, I.P.J. and Prins, H.H.T. (2015) ‘Predicting the Effects of Woody Encroachment on Mammal Communities, Grazing Biomass and Fire Frequency in African Savannas’, PLOS ONE, 10(9), p. e0137857.  https://doi.org/10.1371/journal.pone.0137857

Smith, C., Baker, J.C.A. and Spracklen, D.V. (2023) ‘Tropical deforestation causes large reductions in observed precipitation’, Nature, 615(7951), pp. 270–275.  https://doi.org/10.1038/s41586-022-05690-1

Smith, J.G. and Tinker, M.T. (2022) ‘Alternations in the foraging behaviour of a primary consumer drive patch transition dynamics in a temperate rocky reef ecosystem’, Ecology Letters, 25(8), pp. 1827–1838.  https://doi.org/10.1111/ele.14064

Smith, L.C., Sheng, Y., MacDonald, G.M. and Hinzman, L.D. (2005) ‘Disappearing Arctic Lakes’, Science, 308(5727), pp. 1429–1429.  https://doi.org/10.1126/science.1108142

Sondergaard, M., Jensen, P.J. and Jeppesen, E. (2001) ‘Retention and Internal Loading of Phosphorus in Shallow, Eutrophic Lakes’, The Scientific World Journal, 1, pp. 427–442.  https://doi.org/10.1100/tsw.2001.72

Souter, D., Planes, S., Wicquart, J., Logan, M., Obura, D. and Staub, F. (eds) (2021) Status of Coral Reefs of the World 2020. Global Coral Reef Monitoring Network (GCRMN) and International Coral Reef Initiative (ICRI).  https://doi.org/10.59387/WOTJ9184 (Accessed: 19 October 2023)

SPA (2021) Amazon Assessment Report 2021. Science Panel for the Amazon.  https://www.theamazonwewant.org/amazon-assessment-report-2021/ (Accessed: 13 October 2023)

Spake, R., Barajas-Barbosa, M.P., Blowes, S.A., Bowler, D.E., Callaghan, C.T., Garbowski, M., Jurburg, S.D., van Klink, R., Korell, L., Ladouceur, E., Rozzi, R., Viana, D.S., Xu, W.-B. and Chase, J.M. (2022) ‘Detecting Thresholds of Ecological Change in the Anthropocene’, Annual Review of Environment and Resources, 47(1), pp. 797–821.  https://doi.org/10.1146/annurev-environ-112420-015910.

Spears, B.M., Futter, M.N., Jeppesen, E., Huser, B.J., Ives, S., Davidson, T.A., Adrian, R., Angeler, D.G., Burthe, S.J., Carvalho, L., Daunt, F., Gsell, A.S., Hessen, D.O., Janssen, A.B.G., Mackay, E.B., May, L., Moorhouse, H., Olsen, S., Søndergaard, M., Woods, H. and Thackeray, S.J. (2017) ‘Ecological resilience in lakes and the conjunction fallacy’, Nature Ecology & Evolution, 1(11), pp. 1616–1624.  https://doi.org/10.1038/s41559-017-0333-1

Staal, A., Fetzer, I., Wang-Erlandsson, L., Bosmans, J.H.C., Dekker, S.C., van Nes, E.H., Rockström, J. and Tuinenburg, O.A. (2020) ‘Hysteresis of tropical forests in the 21st century’, Nature Communications, 11(1), p. 4978.  https://doi.org/10.1038/s41467-020-18728-7

Staal, A., Tuinenburg, O.A., Bosmans, J.H.C., Holmgren, M., van Nes, E.H., Scheffer, M., Zemp, D.C. and Dekker, S.C. (2018) ‘Forest-rainfall cascades buffer against drought across the Amazon’, Nature Climate Change, 8(6), pp. 539–543.  https://doi.org/10.1038/s41558-018-0177-y

Staver, A.C., Archibald, S. and Levin, S. (2011) ‘Tree cover in sub-Saharan Africa: Rainfall and fire constrain forest and savanna as alternative stable states’, Ecology, 92(5), pp. 1063–1072.  https://doi.org/10.1890/10-1684.1

Staver, A.C., Archibald, S. and Levin, S.A. (2011) ‘The Global Extent and Determinants of Savanna and Forest as Alternative Biome States’, Science, 334(6053), pp. 230–232.  https://doi.org/10.1126/science.1210465

Steinman, A.D. and Spears, B.M. (2020) Internal phosphorus loading in lakes: causes, case studies, and management. Plantation, Florida: J. Ross Publishing.  https://nora.nerc.ac.uk/id/eprint/529457/ (Accessed: 19 October 2023)

Steinthorsdottir, M., Coxall, H.K., de Boer, A.M., Huber, M., Barbolini, N., Bradshaw, C.D., Burls, N.J., Feakins, S.J., Gasson, E., Henderiks, J., Holbourn, A.E., Kiel, S., Kohn, M.J., Knorr, G., Kürschner, W.M., Lear, C.H., Liebrand, D., Lunt, D.J., Mörs, T., Pearson, P.N., Pound, M.J., Stoll, H. and Strömberg, C. a. E. (2021) ‘The Miocene: The Future of the Past’, Paleoceanography and Paleoclimatology, 36(4), p. e2020PA004037.  https://doi.org/10.1029/2020PA004037

Sternberg, L. (2001) ‘Savanna–forest hysteresis in the tropics’, Global Ecology and Biogeography, 10(4), pp. 369–378.  https://doi.org/10.1046/j.1466-822X.2001.00243.x

Stevens, N., Bond, W., Feurdean, A. and Lehmann, C.E.R. (2022) ‘Grassy Ecosystems in the Anthropocene’, Annual Review of Environment and Resources, 47(1), pp. 261–289.  https://doi.org/10.1146/annurev-environ-112420-015211

Stevens, N., Lehmann, C.E.R., Murphy, B.P. and Durigan, G. (2017) ‘Savanna woody encroachment is widespread across three continents’, Global Change Biology, 23(1), pp. 235–244.  https://doi.org/10.1111/gcb.13409

Stevens-Rumann, C.S., Prichard, S.J., Whitman, E., Parisien, M.-A. and Meddens, A.J.H. (2022) ‘Considering regeneration failure in the context of changing climate and disturbance regimes in western North America’, Canadian Journal of Forest Research, 52(10), pp. 1281–1302.  https://doi.org/10.1139/cjfr-2022-0054

Strack, A., Jonkers, L., C. Rillo, M., Hillebrand, H. and Kucera, M. (2022) ‘Plankton response to global warming is characterized by non-uniform shifts in assemblage composition since the last ice age’, Nature Ecology & Evolution, 6(12), pp. 1871–1880.  https://doi.org/10.1038/s41559-022-01888-8

Strömberg, C.A.E. and Staver, A.C. (2022) ‘The history and challenge of grassy biomes’, Science, 377(6606), pp. 592–593.  https://doi.org/10.1126/science.add1347

Strydom, T., Smit, I.P.J., Govender, N., Coetsee, C., Singh, J., Davies, A.B. and van Wilgen, B.W. (2023) ‘High-intensity fires may have limited medium-term effectiveness for reversing woody plant encroachment in an African savanna’, Journal of Applied Ecology, 60(4), pp. 661–672.  https://doi.org/10.1111/1365-2664.14362

Sully, S., Burkepile, D.E., Donovan, M.K., Hodgson, G. and van Woesik, R. (2019) ‘A global analysis of coral bleaching over the past two decades’, Nature Communications, 10(1), p. 1264.  https://doi.org/10.1038/s41467-019-09238-2

Sweet, W.V. and Park, J. (2014) ‘From the extreme to the mean: Acceleration and tipping points of coastal inundation from sea level rise’, Earth’s Future, 2(12), pp. 579–600.  https://doi.org/10.1002/2014EF000272

Tabares, X., Zimmermann, H., Dietze, E., Ratzmann, G., Belz, L., Vieth-Hillebrand, A., Dupont, L., Wilkes, H., Mapani, B. and Herzschuh, U. (2020) ‘Vegetation state changes in the course of shrub encroachment in an African savanna since about 1850 CE and their potential drivers’, Ecology and Evolution, 10(2), pp. 962–979.  https://doi.org/10.1002/ece3.5955

Taillie, P.J., Roman-Cuesta, R., Lagomasino, D., Cifuentes-Jara, M., Fatoyinbo, T., Ott, L.E. and Poulter, B. (2020) ‘Widespread mangrove damage resulting from the 2017 Atlantic mega hurricane season’, Environmental Research Letters, 15(6), p. 064010.  https://doi.org/10.1088/1748-9326/ab82cf

Tátrai, I., Boros, G., György, Á.I., Mátyás, K., Korponai, J., Pomogyi, P., Havasi, M. and Kucserka, T. (2009) ‘Abrupt shift from clear to turbid state in a shallow eutrophic, biomanipulated lake’, Hydrobiologia, 620(1), pp. 149–161.  https://doi.org/10.1007/s10750-008-9625-4

Tavares, J.V., Oliveira, R.S., Mencuccini, M., Signori-Müller, C., Pereira, L., Diniz, F.C., Gilpin, M., Marca Zevallos, M.J., Salas Yupayccana, C.A., Acosta, M., Pérez Mullisaca, F.M., Barros, F. de V., Bittencourt, P., Jancoski, H., Scalon, M.C., Marimon, B.S., Oliveras Menor, I., Marimon, B.H., Fancourt, M., Chambers-Ostler, A., Esquivel-Muelbert, A., Rowland, L., Meir, P., Lola da Costa, A.C., Nina, A., Sanchez, J.M.B., Tintaya, J.S., Chino, R.S.C., Baca, J., Fernandes, L., Cumapa, E.R.M., Santos, J.A.R., Teixeira, R., Tello, L., Ugarteche, M.T.M., Cuellar, G.A., Martinez, F., Araujo-Murakami, A., Almeida, E., da Cruz, W.J.A., del Aguila Pasquel, J., Aragāo, L., Baker, T.R., de Camargo, P.B., Brienen, R., Castro, W., Ribeiro, S.C., Coelho de Souza, F., Cosio, E.G., Davila Cardozo, N., da Costa Silva, R., Disney, M., Espejo, J.S., Feldpausch, T.R., Ferreira, L., Giacomin, L., Higuchi, N., Hirota, M., Honorio, E., Huaraca Huasco, W., Lewis, S., Flores Llampazo, G., Malhi, Y., Monteagudo Mendoza, A., Morandi, P., Chama Moscoso, V., Muscarella, R., Penha, D., Rocha, M.C., Rodrigues, G., Ruschel, A.R., Salinas, N., Schlickmann, M., Silveira, M., Talbot, J., Vásquez, R., Vedovato, L., Vieira, S.A., Phillips, O.L., Gloor, E. and Galbraith, D.R. (2023) ‘Basin-wide variation in tree hydraulic safety margins predicts the carbon balance of Amazon forests’, Nature, 617(7959), pp. 111–117.  https://doi.org/10.1038/s41586-023-05971-3

Te Wierik, S.A., Keune, J., Miralles, D.G., Gupta, J., Artzy-Randrup, Y.A., Gimeno, L., Nieto, R. and Cammeraat, L.H. (2022) ‘The Contribution of Transpiration to Precipitation Over African Watersheds’, Water Resources Research, 58(11), p. e2021WR031721.  https://doi.org/10.1029/2021WR031721

Terhaar, J., Lauerwald, R., Regnier, P., Gruber, N. and Bopp, L. (2021) ‘Around one third of current Arctic Ocean primary production sustained by rivers and coastal erosion’, Nature Communications, 12(1), p. 169.  https://doi.org/10.1038/s41467-020-20470-z

Terrer, C., Jackson, R.B., Prentice, I.C., Keenan, T.F., Kaiser, C., Vicca, S., Fisher, J.B., Reich, P.B., Stocker, B.D., Hungate, B.A., Peñuelas, J., McCallum, I., Soudzilovskaia, N.A., Cernusak, L.A., Talhelm, A.F., Van Sundert, K., Piao, S., Newton, P.C.D., Hovenden, M.J., Blumenthal, D.M., Liu, Y.Y., Müller, C., Winter, K., Field, C.B., Viechtbauer, W., Van Lissa, C.J., Hoosbeek, M.R., Watanabe, M., Koike, T., Leshyk, V.O., Polley, H.W. and Franklin, O. (2019) ‘Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass’, Nature Climate Change, 9(9), pp. 684–689.  https://doi.org/10.1038/s41558-019-0545-2

Teufel, B. and Sushama, L. (2019) ‘Abrupt changes across the Arctic permafrost region endanger northern development’, Nature Climate Change, 9(11), pp. 858–862.  https://doi.org/10.1038/s41558-019-0614-6

Teuling, A.J., Taylor, C.M., Meirink, J.F., Melsen, L.A., Miralles, D.G., van Heerwaarden, C.C., Vautard, R., Stegehuis, A.I., Nabuurs, G.-J. and de Arellano, J.V.-G. (2017) ‘Observational evidence for cloud cover enhancement over western European forests’, Nature Communications, 8(1), p. 14065.  https://doi.org/10.1038/ncomms14065

Teutli Hernández, C., Herrera-Silveira, J.A., Cisneros-de la Cruz, D.J. and Roman-Cuesta, R.M. (2020) Mangrove ecological restoration guide: Lessons learned. Mainstreaming Wetlands into the Climate Agenda: A multilevel approach (SWAMP). CIFOR/CINVESTAV-IPN/UNAM-Sisal/PMC, p. 42.  https://doi.org/10.17528/cifor/008170

Thom, D. (2023) ‘Natural disturbances as drivers of tipping points in forest ecosystems under climate change – implications for adaptive management’, Forestry: An International Journal of Forest Research, 96(3), pp. 305–315.  https://doi.org/10.1093/forestry/cpad011

Thom, D., Taylor, A.R., Seidl, R., Thuiller, W., Wang, J., Robideau, M. and Keeton, W.S. (2021) ‘Forest structure, not climate, is the primary driver of functional diversity in northeastern North America’, Science of The Total Environment, 762, p. 143070.  https://doi.org/10.1016/j.scitotenv.2020.143070

Thonicke, K., Billing, M., von Bloh, W., Sakschewski, B., Niinemets, Ü., Peñuelas, J., Cornelissen, J.H.C., Onoda, Y., van Bodegom, P., Schaepman, M.E., Schneider, F.D. and Walz, A. (2020) ‘Simulating functional diversity of European natural forests along climatic gradients’, Journal of Biogeography, 47(5), pp. 1069–1085.  https://doi.org/10.1111/jbi.13809

Thrane, J.-E., Hessen, D.O. and Andersen, T. (2014) ‘The Absorption of Light in Lakes: Negative Impact of Dissolved Organic Carbon on Primary Productivity’, Ecosystems, 17(6), pp. 1040–1052.  https://doi.org/10.1007/s10021-014-9776-2

Tranvik, L.J., Downing, J.A., Cotner, J.B., Loiselle, S.A., Striegl, R.G., Ballatore, T.J., Dillon, P., Finlay, K., Fortino, K., Knoll, L.B., Kortelainen, P.L., Kutser, T., Larsen, Soren., Laurion, I., Leech, D.M., McCallister, S.L., McKnight, D.M., Melack, J.M., Overholt, E., Porter, J.A., Prairie, Y., Renwick, W.H., Roland, F., Sherman, B.S., Schindler, D.W., Sobek, S., Tremblay, A., Vanni, M.J., Verschoor, A.M., von Wachenfeldt, E. and Weyhenmeyer, G.A. (2009) ‘Lakes and reservoirs as regulators of carbon cycling and climate’, Limnology and Oceanography, 54(6part2), pp. 2298–2314.  https://doi.org/10.4319/lo.2009.54.6_part_2.2298

Tuinenburg, O.A., Theeuwen, J.J.E. and Staal, A. (2020) ‘High-resolution global atmospheric moisture connections from evaporation to precipitation’, Earth System Science Data, 12(4), pp. 3177–3188.  https://doi.org/10.5194/essd-12-3177-2020

Turetsky, M.R., Abbott, B.W., Jones, M.C., Anthony, K.W., Olefeldt, D., Schuur, E.A.G., Grosse, G., Kuhry, P., Hugelius, G., Koven, C., Lawrence, D.M., Gibson, C., Sannel, A.B.K. and McGuire, A.D. (2020) ‘Carbon release through abrupt permafrost thaw’, Nature Geoscience, 13(2), pp. 138–143.  https://doi.org/10.1038/s41561-019-0526-0

Turschwell, M.P., Connolly, R.M., Dunic, J.C., Sievers, M., Buelow, C.A., Pearson, R.M., Tulloch, V.J.D., Côté, I.M., Unsworth, R.K.F., Collier, C.J. and Brown, C.J. (2021) ‘Anthropogenic pressures and life history predict trajectories of seagrass meadow extent at a global scale’, Proceedings of the National Academy of Sciences, 118(45), p. e2110802118.  https://doi.org/10.1073/pnas.2110802118.

United Nations Environment Programme (UNEP) (2020) Projections of Future Coral Bleaching Conditions using IPCC CMIP6 models: Climate Policy Implications, Management Applications, and Regional Seas Summaries. United Nations Environment Programme.  http://www.unep.org/resources/report/projections-future-coral-bleaching-conditions-using-ipcc-cmip6-models-climate (Accessed: 19 October 2023)

Valiela, I., Bowen, J.L. and York, J.K. (2001) ‘Mangrove Forests: One of the World’s Threatened Major Tropical Environments’, BioScience, 51(10), p. 807.  https://doi.org/10.1641/0006-3568(2001)051[0807:MFOOTW]2.0.CO;2.

Van de Wouw, P., Echeverría, C., Rey-Benayas, J.M. and Holmgren, M. (2011) ‘Persistent Acacia savannas replace Mediterranean sclerophyllous forests in South America’, Forest Ecology and Management, 262(6), pp. 1100–1108.  https://doi.org/10.1016/j.foreco.2011.06.009

Velasco Hererra, V.M., Soon, W., Pérez-Moreno, C., Velasco Herrera, G., Martell-Dubois, R., Rosique-de la Cruz, L., Fedorov, V.M., Cerdeira-Estrada, S., Bongelli, E. and Zúñiga, E. (2022) ‘Past and future of wildfires in Northern Hemisphere’s boreal forests’, Forest Ecology and Management, 504, p. 119859.  https://doi.org/10.1016/j.foreco.2021.119859

Veldman, J.W., Aleman, J.C., Alvarado, S.T., Anderson, T.M., Archibald, S., Bond, W.J., Boutton, T.W., Buchmann, N., Buisson, E., Canadell, J.G., Dechoum, M. de S., Diaz-Toribio, M.H., Durigan, G., Ewel, J.J., Fernandes, G.W., Fidelis, A., Fleischman, F., Good, S.P., Griffith, D.M., Hermann, J.-M., Hoffmann, W.A., Le Stradic, S., Lehmann, C.E.R., Mahy, G., Nerlekar, A.N., Nippert, J.B., Noss, R.F., Osborne, C.P., Overbeck, G.E., Parr, C.L., Pausas, J.G., Pennington, R.T., Perring, M.P., Putz, F.E., Ratnam, J., Sankaran, M., Schmidt, I.B., Schmitt, C.B., Silveira, F.A.O., Staver, A.C., Stevens, N., Still, C.J., Strömberg, C.A.E., Temperton, V.M., Varner, J.M. and Zaloumis, N.P. (2019) ‘Comment on “The global tree restoration potential”’, Science, 366(6463), p. eaay7976.  https://doi.org/10.1126/science.aay7976.

Veldman, J.W., Buisson, E., Durigan, G., Fernandes, G.W., Le Stradic, S., Mahy, G., Negreiros, D., Overbeck, G.E., Veldman, R.G., Zaloumis, N.P., Putz, F.E. and Bond, W.J. (2015) ‘Toward an old-growth concept for grasslands, savannas, and woodlands’, Frontiers in Ecology and the Environment, 13(3), pp. 154–162.  https://doi.org/10.1890/140270

Vercelloni, J., Caley, M.J. and Mengersen, K.L. (2020) ‘Thresholds of Coral Cover That Support Coral Reef Biodiversity’, in K.L. Mengersen, P. Pudlo, and C.P. Robert (eds) Case Studies in Applied Bayesian Data Science: CIRM Jean-Morlet Chair, Fall 2018. Cham: Springer International Publishing (Lecture Notes in Mathematics), pp. 385–398.  https://doi.org/10.1007/978-3-030-42553-1_16

Veron, J.E.N., Hoegh-Guldberg, O., Lenton, T.M., Lough, J.M., Obura, D.O., Pearce-Kelly, P., Sheppard, C.R.C., Spalding, M., Stafford-Smith, M.G. and Rogers, A.D. (2009) ‘The coral reef crisis: The critical importance of<350ppm CO2’, Marine Pollution Bulletin, 58(10), pp. 1428–1436.  https://doi.org/10.1016/j.marpolbul.2009.09.009

Vert-pre, K.A., Amoroso, R.O., Jensen, O.P. and Hilborn, R. (2013) ‘Frequency and intensity of productivity regime shifts in marine fish stocks’, Proceedings of the National Academy of Sciences, 110(5), pp. 1779–1784.  https://doi.org/10.1073/pnas.1214879110

Vicente-Serrano, S.M., Zouber, A., Lasanta, T. and Pueyo, Y. (2012) ‘Dryness is accelerating degradation of vulnerable shrublands in semiarid Mediterranean environments’, Ecological Monographs, 82(4), pp. 407–428.  https://doi.org/10.1890/11-2164.1

Vindstad, O.P.L., Jepsen, J.U., Ek, M., Pepi, A. and Ims, R.A. (2019) ‘Can novel pest outbreaks drive ecosystem transitions in northern-boreal birch forest?’, Journal of Ecology, 107(3), pp. 1141–1153.  https://doi.org/10.1111/1365-2745.13093

Walker, B., Holling, C.S., Carpenter, S. and Kinzig, A. (2004) ‘Resilience, Adaptability and Transformability in Social–ecological Systems’, Ecology and Society, 9(2).  https://doi.org/10.5751/ES-00650-090205

Walker, B. and Meyers, J. (2004) ‘Thresholds in Ecological and Social–Ecological Systems: a Developing Database’, Ecology and Society, 9(2).  https://doi.org/10.5751/ES-00664-090203

Walker, B. and Salt, D. (2012) Resilience Practice: Building Capacity to Absorb Disturbance and Maintain Function. Washington, DC: Island Press/Center for Resource Economics.  https://doi.org/10.5822/978-1-61091-231-0

Walters, C. and Kitchell, J.F. (2001) ‘Cultivation/depensation effects on juvenile survival and recruitment: implications for the theory of fishing’, Canadian Journal of Fisheries and Aquatic Sciences, 58(1), pp. 39–50.  https://doi.org/10.1139/f00-160

Wang, R., Dearing, J.A. and Langdon, P.G. (2022) ‘Critical Transitions in Lake Ecosystem State May Be Driven by Coupled Feedback Mechanisms: A Case Study from Lake Erhai, China’, Water, 14(1), p. 85.  https://doi.org/10.3390/w14010085

Wang, S., Foster, A., Lenz, E.A., Kessler, J.D., Stroeve, J.C., Anderson, L.O., Turetsky, M., Betts, R., Zou, S., Liu, W., Boos, W.R. and Hausfather, Z. (2023) ‘Mechanisms and Impacts of Earth System Tipping Elements’, Reviews of Geophysics, 61(1), p. e2021RG000757.  https://doi.org/10.1029/2021RG000757

Wang, S., Zhang, Y., Ju, W., Chen, J.M., Ciais, P., Cescatti, A., Sardans, J., Janssens, I.A., Wu, M., Berry, J.A., Campbell, E., Fernández-Martínez, M., Alkama, R., Sitch, S., Friedlingstein, P., Smith, W.K., Yuan, W., He, W., Lombardozzi, D., Kautz, M., Zhu, D., Lienert, S., Kato, E., Poulter, B., Sanders, T.G.M., Krüger, I., Wang, R., Zeng, N., Tian, H., Vuichard, N., Jain, A.K., Wiltshire, A., Haverd, V., Goll, D.S. and Peñuelas, J. (2020) ‘Recent global decline of CO2 fertilization effects on vegetation photosynthesis’, Science, 370(6522), pp. 1295–1300.  https://doi.org/10.1126/science.abb7772.

Wang, X., Edwards, R.L., Auler, A.S., Cheng, H., Kong, X., Wang, Y., Cruz, F.W., Dorale, J.A. and Chiang, H.-W. (2017) ‘Hydroclimate changes across the Amazon lowlands over the past 45,000 years’, Nature, 541(7636), pp. 204–207.  https://doi.org/10.1038/nature20787

Ward, B.A. (2019) ‘Mixotroph ecology: More than the sum of its parts’, Proceedings of the National Academy of Sciences, 116(13), pp. 5846–5848.  https://doi.org/10.1073/pnas.1902106116

Warren, R., Price, J., Graham, E., Forstenhaeusler, N. and VanDerWal, J. (2018) ‘The projected effect on insects, vertebrates, and plants of limiting global warming to 1.5°C rather than 2°C’, Science, 360(6390), pp. 791–795.  https://doi.org/10.1126/science.aar3646

Watson, A.J., Lenton, T.M. and Mills, B.J.W. (2017) ‘Ocean deoxygenation, the global phosphorus cycle and the possibility of human-caused large-scale ocean anoxia’, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 375(2102), p. 20160318.  https://doi.org/10.1098/rsta.2016.0318

Waycott, M., Duarte, C.M., Carruthers, T.J.B., Orth, R.J., Dennison, W.C., Olyarnik, S., Calladine, A., Fourqurean, J.W., Heck, K.L., Hughes, A.R., Kendrick, G.A., Kenworthy, W.J., Short, F.T. and Williams, S.L. (2009) ‘Accelerating loss of seagrasses across the globe threatens coastal ecosystems’, Proceedings of the National Academy of Sciences, 106(30), pp. 12377–12381.  https://doi.org/10.1073/pnas.0905620106

Westberry, T., Behrenfeld, M.J., Siegel, D.A. and Boss, E. (2008) ‘Carbon-based primary productivity modeling with vertically resolved photoacclimation’, Global Biogeochemical Cycles, 22(2).  https://doi.org/10.1029/2007GB003078

Weyhenmeyer, G.A., Jeppesen, E., Adrian, R., Arvola, L., Blenckner, T., Jankowski, T., Jennings, E., Nõges, P., Nõges, T. and Straile, D. (2007) ‘Nitrate-depleted conditions on the increase in shallow northern European lakes’, Limnology and Oceanography, 52(4), pp. 1346–1353.  https://doi.org/10.4319/lo.2007.52.4.1346

Whitman, E., Parisien, M.-A., Thompson, D.K. and Flannigan, M.D. (2019) ‘Short-interval wildfire and drought overwhelm boreal forest resilience’, Scientific Reports, 9(1), p. 18796.  https://doi.org/10.1038/s41598-019-55036-7

Wieczorkowski, J.D. and Lehmann, C.E.R. (2022) ‘Encroachment diminishes herbaceous plant diversity in grassy ecosystems worldwide’, Global Change Biology, 28(18), pp. 5532–5546.  https://doi.org/10.1111/gcb.16300

Wieczynski, D.J., Moeller, H.V. and Gibert, J.P. (2023) ‘Mixotrophic microbes create carbon tipping points under warming’, Functional Ecology, 37(7), pp. 1774–1786.  https://doi.org/10.1111/1365-2435.14350.

Wilkinson, C.R. (1999) ‘Global and local threats to coral reef functioning and existence: review and predictions’, Marine and Freshwater Research, 50(8), pp. 867–878.  https://doi.org/10.1071/mf99121

Wilkinson, C.R. (2004) Status of coral reefs of the world : 2004. Vol. 1. Australian Institute of Marine Science (AIMS), AU.  https://portals.iucn.org/library/node/8583 (Accessed: 19 October 2023)

Willcock, S., Cooper, G.S., Addy, J. and Dearing, J.A. (2023) ‘Earlier collapse of Anthropocene ecosystems driven by multiple faster and noisier drivers’, Nature Sustainability, pp. 1–12.  https://doi.org/10.1038/s41893-023-01157-x

Williams, W.D. (1999) ‘Salinisation: A major threat to water resources in the arid and semi-arid regions of the world’, Lakes & Reservoirs: Science, Policy and Management for Sustainable Use, 4(3–4), pp. 85–91.  https://doi.org/10.1046/j.1440-1770.1999.00089.x

Wilson, S.S., Furman, B.T., Hall, M.O. and Fourqurean, J.W. (2020) ‘Assessment of Hurricane Irma Impacts on South Florida Seagrass Communities Using Long-Term Monitoring Programs’, Estuaries and Coasts, 43(5), pp. 1119–1132.  https://doi.org/10.1007/s12237-019-00623-0

Winter, A.-M., Vasilyeva, N. and Vladimirov, A. (2023) ‘Spawner weight and ocean temperature drive Allee effect dynamics in Atlantic cod, Gadus morhua: inherent and emergent density regulation’, Biogeosciences, 20(17), pp. 3683–3716.  https://doi.org/10.5194/bg-20-3683-2023

de Wit, H.A., Valinia, S., Weyhenmeyer, G.A., Futter, M.N., Kortelainen, P., Austnes, K., Hessen, D.O., Räike, A., Laudon, H. and Vuorenmaa, J. (2016) ‘Current Browning of Surface Waters Will Be Further Promoted by Wetter Climate’, Environmental Science & Technology Letters, 3(12), pp. 430–435.  https://doi.org/10.1021/acs.estlett.6b00396

Woolway, R.I., Kraemer, B.M., Lenters, J.D., Merchant, C.J., O’Reilly, C.M. and Sharma, S. (2020) ‘Global lake responses to climate change’, Nature Reviews Earth & Environment, 1(8), pp. 388–403.  https://doi.org/10.1038/s43017-020-0067-5.

Woolway, R.I., Sharma, S. and Smol, J.P. (2022) ‘Lakes in Hot Water: The Impacts of a Changing Climate on Aquatic Ecosystems’, BioScience, 72(11), pp. 1050–1061.  https://doi.org/10.1093/biosci/biac052

WWF (2022) Living Planet Report 2022 – Building a nature-positive society. WWF, Zoological Society of London.  https://livingplanet.panda.org/en-GB/ (Accessed: 13 October 2023)

Xu, Z., Mason, J.A., Xu, C., Yi, S., Bathiany, S., Yizhaq, H., Zhou, Y., Cheng, J., Holmgren, M. and Lu, H. (2020) ‘Critical transitions in Chinese dunes during the past 12,000 years’, Science Advances, 6(9), p. eaay8020.  https://doi.org/10.1126/sciadv.aay8020

Yao, F., Livneh, B., Rajagopalan, B., Wang, J., Crétaux, J.-F., Wada, Y. and Berge-Nguyen, M. (2023) ‘Satellites reveal widespread decline in global lake water storage’, Science, 380(6646), pp. 743–749.  https://doi.org/10.1126/science.abo2812

Ye, J.-S., Delgado-Baquerizo, M., Soliveres, S. and Maestre, F.T. (2019) ‘Multifunctionality debt in global drylands linked to past biome and climate’, Global Change Biology, 25(6), pp. 2152–2161.  https://doi.org/10.1111/gcb.14631

Yool, A., Popova, E.E. and Coward, A.C. (2015) ‘Future change in ocean productivity: Is the Arctic the new Atlantic?’, Journal of Geophysical Research: Oceans, 120(12), pp. 7771–7790.  https://doi.org/10.1002/2015JC011167

Zeebe, R.E., Ridgwell, A. and Zachos, J.C. (2016) ‘Anthropogenic carbon release rate unprecedented during the past 66 million years’, Nature Geoscience, 9(4), pp. 325–329.  https://doi.org/10.1038/ngeo2681

Zeeman, B.J., Lunt, I.D. and Morgan, J.W. (2014) ‘Can severe drought reverse woody plant encroachment in a temperate Australian woodland?’, Journal of Vegetation Science, 25(4), pp. 928–936.  https://doi.org/10.1111/jvs.12153

Zemp, D.C., Schleussner, C.-F., Barbosa, H.M.J., van der Ent, R.J., Donges, J.F., Heinke, J., Sampaio, G. and Rammig, A. (2014) ‘On the importance of cascading moisture recycling in South America’, Atmospheric Chemistry and Physics, 14(23), pp. 13337–13359.  https://doi.org/10.5194/acp-14-13337-2014

Zemp, D.C., Schleussner, C.-F., Barbosa, H.M.J., Hirota, M., Montade, V., Sampaio, G., Staal, A., Wang-Erlandsson, L. and Rammig, A. (2017) ‘Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks’, Nature Communications, 8(1), p. 14681.  https://doi.org/10.1038/ncomms14681

Zhang, J., Feng, Y., Maestre, F.T., Berdugo, M., Wang, J., Coleine, C., Sáez-Sandino, T., García-Velázquez, L., Singh, B.K. and Delgado-Baquerizo, M. (2023) ‘Water availability creates global thresholds in multidimensional soil biodiversity and functions’, Nature Ecology & Evolution, 7(7), pp. 1002–1011.  https://doi.org/10.1038/s41559-023-02071-3

Zhang, Q., Barnes, M., Benson, M., Burakowski, E., Oishi, A.C., Ouimette, A., Sanders-DeMott, R., Stoy, P.C., Wenzel, M., Xiong, L., Yi, K. and Novick, K.A. (2020) ‘Reforestation and surface cooling in temperate zones: Mechanisms and implications’, Global Change Biology, 26(6), pp. 3384–3401.  https://doi.org/10.1111/gcb.15069

Zhang, Y., Gentine, P., Luo, X., Lian, X., Liu, Y., Zhou, S., Michalak, A.M., Sun, W., Fisher, J.B., Piao, S. and Keenan, T.F. (2022) ‘Increasing sensitivity of dryland vegetation greenness to precipitation due to rising atmospheric CO2’, Nature Communications, 13(1), p. 4875.  https://doi.org/10.1038/s41467-022-32631-3

Zhang, Y., Keenan, T.F. and Zhou, S. (2021) ‘Exacerbated drought impacts on global ecosystems due to structural overshoot’, Nature Ecology & Evolution, 5(11), pp. 1490–1498.  https://doi.org/10.1038/s41559-021-01551-8

Zhou, Y., Bomfim, B., Bond, W.J., Boutton, T.W., Case, M.F., Coetsee, C., Davies, A.B., February, E.C., Gray, E.F., Silva, L.C.R., Wright, J.L. and Staver, A.C. (2023) ‘Soil carbon in tropical savannas mostly derived from grasses’, Nature Geoscience, 16(8), pp. 710–716.  https://doi.org/10.1038/s41561-023-01232-0

Zhou, Y., Singh, J., Butnor, J.R., Coetsee, C., Boucher, P.B., Case, M.F., Hockridge, E.G., Davies, A.B. and Staver, A.C. (2022) ‘Limited increases in savanna carbon stocks over decades of fire suppression’, Nature, 603(7901), pp. 445–449.  https://doi.org/10.1038/s41586-022-04438-1Zhu, Z., Piao, S., Myneni, R.B., Huang, M., Zeng, Z., Canadell, J.G., Ciais, P., Sitch, S., Friedlingstein, P., Arneth, A., Cao, C., Cheng, L., Kato, E., Koven, C., Li, Y., Lian, X., Liu, Y., Liu, R., Mao, J., Pan, Y., Peng, S., Peñuelas, J., Poulter, B., Pugh, T.A.M., Stocker, B.D., Viovy, N., Wang, X., Wang, Y., Xiao, Z., Yang, H., Zaehle, S. and Zeng, N. (2016) ‘Greening of the Earth and its drivers’, Nature Climate Change, 6(8), pp. 791–795.  https://doi.org/10.1038/nclimate3004

Chapter 1.4

Ali, H., Modi, P., & Mishra, V. (2019). Increased flood risk in Indian sub-continent under the warming climate. Weather and Climate Extremes, 25, 100212. https://doi.org/10.1016/j.wace.2019.100212

Armstrong McKay, D. I., Staal, A., Abrams, J. F., Winkelmann, R., Sakschewski, B., Loriani, S., Fetzer, I., Cornell, S. E., Rockström, J., & Lenton, T. M. (2022). Exceeding 1.5°C global warming could trigger multiple climate tipping points. Science, 377(6611), eabn7950. https://doi.org/10.1126/science.abn7950

Arnold, N. P., & Randall, D. A. (2015). Global-scale convective aggregation: Implications for the Madden-Julian Oscillation. Journal of Advances in Modeling Earth Systems, 7(4), 1499–1518. https://doi.org/10.1002/2015MS000498

Bacon, S., Gould, W. J., & Jia, Y. (2003). Open-ocean convection in the Irminger Sea. Geophysical Research Letters, 30(5). https://doi.org/10.1029/2002GL016271

Bartusek, S., Kornhuber, K., & Ting, M. (2022). 2021 North American heatwave amplified by climate change-driven nonlinear interactions. Nature Climate Change, 12(12), Article 12. https://doi.org/10.1038/s41558-022-01520-4

Bellomo, K., Clement, A., Mauritsen, T., Rädel, G., & Stevens, B. (2014). Simulating the Role of Subtropical Stratocumulus Clouds in Driving Pacific Climate Variability. Journal of Climate, 27(13), 5119–5131. https://doi.org/10.1175/JCLI-D-13-00548.1

Bellomo, K., Meccia, V. L., D’Agostino, R., Fabiano, F., Larson, S. M., von Hardenberg, J., & Corti, S. (2023). Impacts of a weakened AMOC on precipitation over the Euro-Atlantic region in the EC-Earth3 climate model. Climate Dynamics, 61(7), 3397–3416. https://doi.org/10.1007/s00382-023-06754-2

Bellomo 2022- https://meetingorganizer.copernicus.org/EGU22/EGU22-1023.html

Berkelhammer, M., Sinha, A., Stott, L., Cheng, H., Pausata, F. s. r., & Yoshimura, K. (2012). An Abrupt Shift in the Indian Monsoon 4000 Years Ago. In Climates, Landscapes, and Civilizations (pp. 75–88). American Geophysical Union (AGU). https://doi.org/10.1029/2012GM001207

Blackport, R., & Screen, J. A. (2020). Insignificant effect of Arctic amplification on the amplitude of midlatitude atmospheric waves. Science Advances, 6(8), eaay2880. https://doi.org/10.1126/sciadv.aay2880

Bloch-Johnson, J., Pierrehumbert, R. T., & Abbot, D. S. (2015). Feedback temperature dependence determines the risk of high warming. Geophysical Research Letters, 42(12), 4973–4980. https://doi.org/10.1002/2015GL064240

Boer, G. J. (2000). A study of atmosphere-ocean predictability on long time scales. Climate Dynamics, 16(6), 469–477. https://doi.org/10.1007/s003820050340

Boers, N. (2021). Observation-based early-warning signals for a collapse of the Atlantic Meridional Overturning Circulation. Nature Climate Change, 11(8), Article 8. https://doi.org/10.1038/s41558-021-01097-4

Boers, N., Marwan, N., Barbosa, H. M. J., & Kurths, J. (2017). A deforestation-induced tipping point for the South American monsoon system. Scientific Reports, 7(1), Article 1. https://doi.org/10.1038/srep41489

Böhm, E., Lippold, J., Gutjahr, M., Frank, M., Blaser, P., Antz, B., Fohlmeister, J., Frank, N., Andersen, M. B., & Deininger, M. (2015). Strong and deep Atlantic meridional overturning circulation during the last glacial cycle. Nature, 517(7532), Article 7532. https://doi.org/10.1038/nature14059

Bollasina, M. A., Ming, Y., & Ramaswamy, V. (2011). Anthropogenic Aerosols and the Weakening of the South Asian Summer Monsoon. Science, 334(6055), 502–505. https://doi.org/10.1126/science.1204994

Bonnet, R., Boucher, O., Deshayes, J., Gastineau, G., Hourdin, F., Mignot, J., Servonnat, J., & Swingedouw, D. (2021). Presentation and Evaluation of the IPSL-CM6A-LR Ensemble of Extended Historical Simulations. Journal of Advances in Modeling Earth Systems, 13(9), e2021MS002565. https://doi.org/10.1029/2021MS002565

Boos, W. R., & Storelvmo, T. (2016). Near-linear response of mean monsoon strength to a broad range of radiative forcings. Proceedings of the National Academy of Sciences, 113(6), 1510–1515. https://doi.org/10.1073/pnas.1517143113

Borah, P. J., Venugopal, V., Sukhatme, J., Muddebihal, P., & Goswami, B. N. (2020). Indian monsoon derailed by a North Atlantic wavetrain. Science, 370(6522), 1335–1338. https://doi.org/10.1126/science.aay6043

Born, A., & Stocker, T. F. (2014). Two Stable Equilibria of the Atlantic Subpolar Gyre. Journal of Physical Oceanography, 44(1), 246–264. https://doi.org/10.1175/JPO-D-13-073.1

Born, A., Stocker, T. F., & Sandø, A. B. (2016). Transport of salt and freshwater in the Atlantic Subpolar Gyre. Ocean Dynamics, 66(9), 1051–1064. https://doi.org/10.1007/s10236-016-0970-y

Boucher, O., Halloran, P. R., Burke, E. J., Doutriaux-Boucher, M., Jones, C. D., Lowe, J., Ringer, M. A., Robertson, E., & Wu, P. (2012). Reversibility in an Earth System model in response to CO2 concentration changes. Environmental Research Letters, 7(2), 024013. https://doi.org/10.1088/1748-9326/7/2/024013

Bower, A., Lozier, S., Biastoch, A., Drouin, K., Foukal, N., Furey, H., Lankhorst, M., Rühs, S., & Zou, S. (2019). Lagrangian Views of the Pathways of the Atlantic Meridional Overturning Circulation. Journal of Geophysical Research: Oceans, 124(8), 5313–5335. https://doi.org/10.1029/2019JC015014

Broecker, W. S., Denton, G. H., Edwards, R. L., Cheng, H., Alley, R. B., & Putnam, A. E. (2010). Putting the Younger Dryas cold event into context. Quaternary Science Reviews, 29(9), 1078–1081. https://doi.org/10.1016/j.quascirev.2010.02.019

Brovkin, V., Brook, E., Williams, J. W., Bathiany, S., Lenton, T. M., Barton, M., DeConto, R. M., Donges, J. F., Ganopolski, A., McManus, J., Praetorius, S., de Vernal, A., Abe-Ouchi, A., Cheng, H., Claussen, M., Crucifix, M., Gallopín, G., Iglesias, V., Kaufman, D. S., … Yu, Z. (2021). Past abrupt changes, tipping points and cascading impacts in the Earth system. Nature Geoscience, 14(8), Article 8. https://doi.org/10.1038/s41561-021-00790-5

Buckley, M. W., & Marshall, J. (2016). Observations, inferences, and mechanisms of the Atlantic Meridional Overturning Circulation: A review. Reviews of Geophysics, 54(1), 5–63. https://doi.org/10.1002/2015RG000493

Bulgin, C. E., Mecking, J. V., Harvey, B. J., Jevrejeva, S., McCarroll, N. F., Merchant, C. J., & Sinha, B. (2023). Dynamic sea-level changes and potential implications for storm surges in the UK: A storylines perspective. Environmental Research Letters, 18(4), 044033. https://doi.org/10.1088/1748-9326/acc6df

Caballero, R., & Carlson, H. (2018). Surface Superrotation. Journal of the Atmospheric Sciences, 75(10), 3671–3689. https://doi.org/10.1175/JAS-D-18-0076.1

Caballero, R., & Huber, M. (2010). Spontaneous transition to superrotation in warm climates simulated by CAM3. Geophysical Research Letters, 37(11). https://doi.org/10.1029/2010GL043468

Caballero, R., & Huber, M. (2013). State-dependent climate sensitivity in past warm climates and its implications for future climate projections. Proceedings of the National Academy of Sciences, 110(35), 14162–14167. https://doi.org/10.1073/pnas.1303365110

Caesar, L., McCarthy, G. D., Thornalley, D. J. R., Cahill, N., & Rahmstorf, S. (2021). Current Atlantic Meridional Overturning Circulation weakest in last millennium. Nature Geoscience, 14(3), Article 3. https://doi.org/10.1038/s41561-021-00699-z

Caesar, L., Rahmstorf, S., Robinson, A., Feulner, G., & Saba, V. (2018). Observed fingerprint of a weakening Atlantic Ocean overturning circulation. Nature, 556(7700), Article 7700. https://doi.org/10.1038/s41586-018-0006-5

Cai, B., Edwards, R. L., Cheng, H., Tan, M., Wang, X., & Liu, T. (2008). A dry episode during the Younger Dryas and centennial-scale weak monsoon events during the early Holocene: A high-resolution stalagmite record from southeast of the Loess Plateau, China. Geophysical Research Letters, 35(2). https://doi.org/10.1029/2007GL030986

Cai, W., Wang, G., Dewitte, B., Wu, L., Santoso, A., Takahashi, K., Yang, Y., Carréric, A., & McPhaden, M. J. (2018). Increased variability of eastern Pacific El Niño under greenhouse warming. Nature, 564(7735), Article 7735. https://doi.org/10.1038/s41586-018-0776-9

Callahan, C. W., & Mankin, J. S. (2023). Persistent effect of El Niño on global economic growth. Science, 380(6649), 1064–1069. https://doi.org/10.1126/science.adf2983

Campos, M. C., Chiessi, C. M., Prange, M., Mulitza, S., Kuhnert, H., Paul, A., Venancio, I. M., Albuquerque, A. L. S., Cruz, F. W., & Bahr, A. (2019). A new mechanism for millennial scale positive precipitation anomalies over tropical South America. Quaternary Science Reviews, 225, 105990. https://doi.org/10.1016/j.quascirev.2019.105990

Cao, J., Wang, H., Wang, B., Zhao, H., Wang, C., & Zhu, X. (2022). Higher Sensitivity of Northern Hemisphere Monsoon to Anthropogenic Aerosol Than Greenhouse Gases. Geophysical Research Letters, 49(20), e2022GL100270. https://doi.org/10.1029/2022GL100270

Capotondi, A., Wittenberg, A. T., Newman, M., Lorenzo, E. D., Yu, J.-Y., Braconnot, P., Cole, J., Dewitte, B., Giese, B., Guilyardi, E., Jin, F.-F., Karnauskas, K., Kirtman, B., Lee, T., Schneider, N., Xue, Y., & Yeh, S.-W. (2015). Understanding ENSO Diversity. Bulletin of the American Meteorological Society, 96(6), 921–938. https://doi.org/10.1175/BAMS-D-13-00117.1

Carlson, A. E. (2013a). PALEOCLIMATE | The Younger Dryas Climate Event. In S. A. Elias & C. J. Mock (Eds.), Encyclopedia of Quaternary Science (Second Edition) (pp. 126–134). Elsevier. https://doi.org/10.1016/B978-0-444-53643-3.00029-7

Carlson, A. E. (2013b). PALEOCLIMATE | The Younger Dryas Climate Event. In S. A. Elias & C. J. Mock (Eds.), Encyclopedia of Quaternary Science (Second Edition) (pp. 126–134). Elsevier. https://doi.org/10.1016/B978-0-444-53643-3.00029-7

Carvalho, L. M. V., Jones, C., Posadas, A. N. D., Quiroz, R., Bookhagen, B., & Liebmann, B. (2012). Precipitation Characteristics of the South American Monsoon System Derived from Multiple Datasets. Journal of Climate, 25(13), 4600–4620. https://doi.org/10.1175/JCLI-D-11-00335.1

Chang, P., Zhang, S., Danabasoglu, G., Yeager, S. G., Fu, H., Wang, H., Castruccio, F. S., Chen, Y., Edwards, J., Fu, D., Jia, Y., Laurindo, L. C., Liu, X., Rosenbloom, N., Small, R. J., Xu, G., Zeng, Y., Zhang, Q., Bacmeister, J., … Wu, L. (2020). An Unprecedented Set of High-Resolution Earth System Simulations for Understanding Multiscale Interactions in Climate Variability and Change. Journal of Advances in Modeling Earth Systems, 12(12), e2020MS002298. https://doi.org/10.1029/2020MS002298

Charney, J. G. (1975). Dynamics of deserts and drought in the Sahel. Quarterly Journal of the Royal Meteorological Society, 101(428), 193–202. https://doi.org/10.1002/qj.49710142802

Charney, J., Stone, P. H., & Quirk, W. J. (1975). Drought in the Sahara: A Biogeophysical Feedback Mechanism. Science, 187(4175), 434–435. https://doi.org/10.1126/science.187.4175.434

Chaudhary, C., Richardson, A. J., Schoeman, D. S., & Costello, M. J. (2021). Global warming is causing a more pronounced dip in marine species richness around the equator. Proceedings of the National Academy of Sciences, 118(15), e2015094118. https://doi.org/10.1073/pnas.2015094118

Chen, Z., Zhou, T., Zhang, L., Chen, X., Zhang, W., & Jiang, J. (2020). Global Land Monsoon Precipitation Changes in CMIP6 Projections. Geophysical Research Letters, 47(14), e2019GL086902. https://doi.org/10.1029/2019GL086902

Cherchi, A., Terray, P., Ratna, S. B., Sankar, S., Sooraj, K. P., & Behera, S. (2021). Chapter 8 – Indian Ocean Dipole influence on Indian summer monsoon and ENSO: A review. In J. Chowdary, A. Parekh, & C. Gnanaseelan (Eds.), Indian Summer Monsoon Variability (pp. 157–182). Elsevier. https://doi.org/10.1016/B978-0-12-822402-1.00011-9

Chevuturi, A., Klingaman, N. P., Turner, A. G., & Hannah, S. (2018). Projected Changes in the Asian-Australian Monsoon Region in 1.5°C and 2.0°C Global-Warming Scenarios. Earth’s Future, 6(3), 339–358. https://doi.org/10.1002/2017EF000734

Chiessi, C. M., Mulitza, S., Pätzold, J., Wefer, G., & Marengo, J. A. (2009). Possible impact of the Atlantic Multidecadal Oscillation on the South American summer monsoon. Geophysical Research Letters, 36(21). https://doi.org/10.1029/2009GL039914

Claret, M., Galbraith, E. D., Palter, J. B., Bianchi, D., Fennel, K., Gilbert, D., & Dunne, J. P. (2018). Rapid coastal deoxygenation due to ocean circulation shift in the northwest Atlantic. Nature Climate Change, 8(10), Article 10. https://doi.org/10.1038/s41558-018-0263-1

Climate Prediction Center: ENSO Diagnostic Discussion. (n.d.). Retrieved October 26, 2023, from https://www.cpc.ncep.noaa.gov/products/analysis_monitoring/enso_advisory/ensodisc.html

Climate-Driven Ecosystem Succession in the Sahara: The Past 6000 Years | Science. (n.d.). Retrieved October 26, 2023, from https://www.science.org/doi/abs/10.1126/science.1154913

Collins, J. A., Prange, M., Caley, T., Gimeno, L., Beckmann, B., Mulitza, S., Skonieczny, C., Roche, D., & Schefuß, E. (2017). Rapid termination of the African Humid Period triggered by northern high-latitude cooling. Nature Communications, 8(1), Article 1. https://doi.org/10.1038/s41467-017-01454-y

Copernicus Climate Change Service. (2019). ERA5 monthly averaged data on single levels from 1979 to present [dataset]. ECMWF. https://doi.org/10.24381/CDS.F17050D7

Coumou, D., Di Capua, G., Vavrus, S., Wang, L., & Wang, S. (2018). The influence of Arctic amplification on mid-latitude summer circulation. Nature Communications, 9(1), Article 1. https://doi.org/10.1038/s41467-018-05256-8

Cruz, F. W., Burns, S. J., Karmann, I., Sharp, W. D., Vuille, M., Cardoso, A. O., Ferrari, J. A., Silva Dias, P. L., & Viana, O. (2005). Insolation-driven changes in atmospheric circulation over the past 116,000 years in subtropical Brazil. Nature, 434(7029), Article 7029. https://doi.org/10.1038/nature03365

Curtis, P. E., Ceppi, P., & Zappa, G. (2020). Role of the mean state for the Southern Hemispheric jet stream response to CO2 forcing in CMIP6 models. Environmental Research Letters, 15(6), 064011. https://doi.org/10.1088/1748-9326/ab8331

Dai, A., Luo, D., Song, M., & Liu, J. (2019). Arctic amplification is caused by sea-ice loss under increasing CO2. Nature Communications, 10(1), Article 1. https://doi.org/10.1038/s41467-018-07954-9

Dallmeyer, A., Claussen, M., Lorenz, S. J., Sigl, M., Toohey, M., & Herzschuh, U. (2021). Holocene vegetation transitions and their climatic drivers in MPI-ESM1.2. Climate of the Past, 17(6), 2481–2513. https://doi.org/10.5194/cp-17-2481-2021

de Carvalho, L. M. V., & Cavalcanti, I. F. A. (2016). The South American Monsoon System (SAMS). In L. M. V. de Carvalho & C. Jones (Eds.), The Monsoons and Climate Change: Observations and Modeling (pp. 121–148). Springer International Publishing. https://doi.org/10.1007/978-3-319-21650-8_6

Deep learning reconstruction of Atlantic Meridional Overturning Circulation strength validates ongoig twenty-first century decline. (2023a, October 2). https://doi.org/10.21203/rs.3.rs-3377545/v1

Deep learning reconstruction of Atlantic Meridional Overturning Circulation strength validates ongoig twenty-first century decline. (2023b, October 2). https://doi.org/10.21203/rs.3.rs-3377545/v1

Deep learning reconstruction of Atlantic Meridional Overturning Circulation strength validates ongoig twenty-first century decline. (2023c, October 2). https://doi.org/10.21203/rs.3.rs-3377545/v1

deMenocal, P., Ortiz, J., Guilderson, T., Adkins, J., Sarnthein, M., Baker, L., & Yarusinsky, M. (2000). Abrupt onset and termination of the African Humid Period: Rapid climate responses to gradual insolation forcing. Quaternary Science Reviews, 19(1), 347–361. https://doi.org/10.1016/S0277-3791(99)00081-5

Dima, M., & Lohmann, G. (2010). Evidence for Two Distinct Modes of Large-Scale Ocean Circulation Changes over the Last Century. Journal of Climate, 23(1), 5–16. https://doi.org/10.1175/2009JCLI2867.1

DiNezio, P. N., Clement, A. C., Vecchi, G. A., Soden, B. J., Kirtman, B. P., & Lee, S.-K. (2009). Climate Response of the Equatorial Pacific to Global Warming. Journal of Climate, 22(18), 4873–4892. https://doi.org/10.1175/2009JCLI2982.1

Ditlevsen, P., & Ditlevsen, S. (2023). Warning of a forthcoming collapse of the Atlantic meridional overturning circulation. Nature Communications, 14(1), Article 1. https://doi.org/10.1038/s41467-023-39810-w

Douville, H., Raghavan, K., Renwick, J., Allan, R. P., Arias, P. A., Barlow, M., Cerezo-Mota, R., Cherchi, A., Gan, T. Y., Gergis, J., Jiang, D., Khan, A., Pokam Mba, W., Rosenfeld, D., Tierney, J., & Zolina, O. (2021). Chapter 6: Water Cycle Changes. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.

Dpblas-Reyes, F., Sörensson, A. A., Almazroui, M., Dosio, A., Gutowski, W. J., Haarsma, R., Hamdi, R., Hewitson, B., Kwon, W.-T., Lamptey, B. L., Maraun, D., Stephenson, T. S., Takayabu, I., Terray, L., Turner, A., & Zuo, Z. (2021). Chapter 10: Linking Global to Regional Climate Change. In V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, & B. Zhou (Eds.), Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Repor. Cambridge University Press.

Drijfhout, S., Bathiany, S., Beaulieu, C., Brovkin, V., Claussen, M., Huntingford, C., Scheffer, M., Sgubin, G., & Swingedouw, D. (2015). Catalogue of abrupt shifts in Intergovernmental Panel on Climate Change climate models. Proceedings of the National Academy of Sciences, 112(43), E5777–E5786. https://doi.org/10.1073/pnas.1511451112

Drijfhout, S., Gleeson, E., Dijkstra, H. A., & Livina, V. (2013). Spontaneous abrupt climate change due to an atmospheric blocking–sea-ice–ocean feedback in an unforced climate model simulation. Proceedings of the National Academy of Sciences, 110(49), 19713–19718. https://doi.org/10.1073/pnas.1304912110

Drijfhout, S., Oldenborgh, G. J. van, & Cimatoribus, A. (2012). Is a Decline of AMOC Causing the Warming Hole above the North Atlantic in Observed and Modeled Warming Patterns? Journal of Climate, 25(24), 8373–8379. https://doi.org/10.1175/JCLI-D-12-00490.1

Druckenmiller, M. L., Moon, T. A., Thoman, R. L., Ballinger, T. J., Berner, L. T., Bernhard, G. H., Bhatt, U. S., Bjerke, J. W., Box, J. E., Brown, R., Cappelen, J., Christiansen, H. H., Decharme, B., Derksen, C., Divine, D., Drozdov, D. S., Chereque, A. E., Epstein, H. E., Farquharson, L. M., … Ziel, R. (2021). The Arctic. Bulletin of the American Meteorological Society, 102(8), S263–S316. https://doi.org/10.1175/BAMS-D-21-0086.1

Dukhovskoy, D. S., Yashayaev, I., Chassignet, E. P., Myers, P. G., Platov, G., & Proshutinsky, A. (2021). Time Scales of the Greenland Freshwater Anomaly in the Subpolar North Atlantic. Journal of Climate, 34(22), 8971–8987. https://doi.org/10.1175/JCLI-D-20-0610.1

Fedorov, A. V., Brierley, C. M., Lawrence, K. T., Liu, Z., Dekens, P. S., & Ravelo, A. C. (2013). Patterns and mechanisms of early Pliocene warmth. Nature, 496(7443), 43–49. https://doi.org/10.1038/nature12003

Fedorov, A. V., Burls, N. J., Lawrence, K. T., & Peterson, L. C. (2015). Tightly linked zonal and meridional sea surface temperature gradients over the past five million years. Nature Geoscience, 8(12), Article 12. https://doi.org/10.1038/ngeo2577

Fedorov, A. V., Dekens, P. S., McCarthy, M., Ravelo, A. C., deMenocal, P. B., Barreiro, M., Pacanowski, R. C., & Philander, S. G. (2006). The Pliocene Paradox (Mechanisms for a Permanent El Niño). Science, 312(5779), 1485–1489. https://doi.org/10.1126/science.1122666

Fedorov, A. V., Hu, S., Wittenberg, A. T., Levine, A. F. Z., & Deser, C. (2020). ENSO Low-Frequency Modulation and Mean State Interactions. In El Niño Southern Oscillation in a Changing Climate (pp. 173–198). American Geophysical Union (AGU). https://doi.org/10.1002/9781119548164.ch8

Feingold, G., Koren, I., Yamaguchi, T., & Kazil, J. (2015). On the reversibility of transitions between closed and open cellular convection. Atmospheric Chemistry and Physics, 15(13), 7351–7367. https://doi.org/10.5194/acp-15-7351-2015

Feulner, G., Rahmstorf, S., Levermann, A., & Volkwardt, S. (2013). On the Origin of the Surface Air Temperature Difference between the Hemispheres in Earth’s Present-Day Climate. Journal of Climate, 26(18), 7136–7150. https://doi.org/10.1175/JCLI-D-12-00636.1

Florindo-López, C., Bacon, S., Aksenov, Y., Chafik, L., Colbourne, E., & Holliday, N. P. (2020). Arctic Ocean and Hudson Bay Freshwater Exports: New Estimates from Seven Decades of Hydrographic Surveys on the Labrador Shelf. Journal of Climate, 33(20), 8849–8868. https://doi.org/10.1175/JCLI-D-19-0083.1

Fontela, M., Pérez, F. F., Mercier, H., & Lherminier, P. (2020). North Atlantic Western Boundary Currents Are Intense Dissolved Organic Carbon Streams. Frontiers in Marine Science, 7. https://www.frontiersin.org/articles/10.3389/fmars.2020.593757

Fox-Kemper, B., Hewitt, H. T., Xiao, C., Aðalgeirsdóttir, G., Drijfhout, S. S., Edwards, T. L., Golledge, N. R., Hemer, M., Kopp, R. E., Krinner, G., Mix, A., Notz, D., Nowicki, S., Nurhati, I. S., Ruiz, L., Sallée, J.-B., Slangen, A. B. A., & Yu, Y. (2021). Chapter 9: Ocean, Cryosphere and Sea Level Change. In V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, & B. Zhou (Eds.), Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.

Frajka-Williams, E., Ansorge, I. J., Baehr, J., Bryden, H. L., Chidichimo, M. P., Cunningham, S. A., Danabasoglu, G., Dong, S., Donohue, K. A., Elipot, S., Heimbach, P., Holliday, N. P., Hummels, R., Jackson, L. C., Karstensen, J., Lankhorst, M., Le Bras, I. A., Lozier, M. S., McDonagh, E. L., … Wilson, C. (2019). Atlantic Meridional Overturning Circulation: Observed Transport and Variability. Frontiers in Marine Science, 6. https://www.frontiersin.org/articles/10.3389/fmars.2019.00260

Francis, J. A., & Vavrus, S. J. (2015). Evidence for a wavier jet stream in response to rapid Arctic warming. Environmental Research Letters, 10(1), 014005. https://doi.org/10.1088/1748-9326/10/1/014005

Fröb, F., Olsen, A., Becker, M., Chafik, L., Johannessen, T., Reverdin, G., & Omar, A. (2019). Wintertime fCO2 Variability in the Subpolar North Atlantic Since 2004. Geophysical Research Letters, 46(3), 1580–1590. https://doi.org/10.1029/2018GL080554

Gadgil, S. (2018). The monsoon system: Land–sea breeze or the ITCZ? Journal of Earth System Science, 127(1), 1. https://doi.org/10.1007/s12040-017-0916-x

Galaasen, E. V., Ninnemann, U. S., Irvalı, N., Kleiven, H. (Kikki) F., Rosenthal, Y., Kissel, C., & Hodell, D. A. (2014). Rapid Reductions in North Atlantic Deep Water During the Peak of the Last Interglacial Period. Science, 343(6175), 1129–1132. https://doi.org/10.1126/science.1248667

García-Ibáñez, M. I., Bates, N. R., Bakker, D. C. E., Fontela, M., & Velo, A. (2021). Cold-water corals in the Subpolar North Atlantic Ocean exposed to aragonite undersaturation if the 2 °C global warming target is not met. Global and Planetary Change, 201, 103480. https://doi.org/10.1016/j.gloplacha.2021.103480

Geen, R., Bordoni, S., Battisti, D. S., & Hui, K. (2020). Monsoons, ITCZs, and the Concept of the Global Monsoon. Reviews of Geophysics, 58(4), e2020RG000700. https://doi.org/10.1029/2020RG000700

Gent, P. R. (2018). A commentary on the Atlantic meridional overturning circulation stability in climate models. Ocean Modelling, 122, 57–66. https://doi.org/10.1016/j.ocemod.2017.12.006

Giannini, A., Salack, S., Lodoun, T., Ali, A., Gaye, A. T., & Ndiaye, O. (2013). A unifying view of climate change in the Sahel linking intra-seasonal, interannual and longer time scales. Environmental Research Letters, 8(2), 024010. https://doi.org/10.1088/1748-9326/8/2/024010

Grothe, P. R., Cobb, K. M., Liguori, G., Di Lorenzo, E., Capotondi, A., Lu, Y., Cheng, H., Edwards, R. L., Southon, J. R., Santos, G. M., Deocampo, D. M., Lynch-Stieglitz, J., Chen, T., Sayani, H. R., Thompson, D. M., Conroy, J. L., Moore, A. L., Townsend, K., Hagos, M., … Toth, L. T. (2020). Enhanced El Niño–Southern Oscillation Variability in Recent Decades. Geophysical Research Letters, 47(7), e2019GL083906. https://doi.org/10.1029/2019GL083906

Gupta, A. K., Anderson, D. M., & Overpeck, J. T. (2003). Abrupt changes in the Asian southwest monsoon during the Holocene and their links to the North Atlantic Ocean. Nature, 421(6921), Article 6921. https://doi.org/10.1038/nature01340

Ha, K.-J., Moon, S., Timmermann, A., & Kim, D. (2020). Future Changes of Summer Monsoon Characteristics and Evaporative Demand Over Asia in CMIP6 Simulations. Geophysical Research Letters, 47(8), e2020GL087492. https://doi.org/10.1029/2020GL087492

Haine, T. W. N., Curry, B., Gerdes, R., Hansen, E., Karcher, M., Lee, C., Rudels, B., Spreen, G., de Steur, L., Stewart, K. D., & Woodgate, R. (2015). Arctic freshwater export: Status, mechanisms, and prospects. Global and Planetary Change, 125, 13–35. https://doi.org/10.1016/j.gloplacha.2014.11.013

Halloran, P. R., Booth, B. B. B., Jones, C. D., Lambert, F. H., McNeall, D. J., Totterdell, I. J., & Völker, C. (2015). The mechanisms of North Atlantic CO2 uptake in a large Earth System Model ensemble. Biogeosciences, 12(14), 4497–4508. https://doi.org/10.5194/bg-12-4497-2015

Hawkins, E., Smith, R. S., Allison, L. C., Gregory, J. M., Woollings, T. J., Pohlmann, H., & de Cuevas, B. (2011). Bistability of the Atlantic overturning circulation in a global climate model and links to ocean freshwater transport. Geophysical Research Letters, 38(10). https://doi.org/10.1029/2011GL047208

Haywood, J. M., Jones, A., Bellouin, N., & Stephenson, D. (2013). Asymmetric forcing from stratospheric aerosols impacts Sahelian rainfall. Nature Climate Change, 3(7), Article 7. https://doi.org/10.1038/nclimate1857

Heede, U. K., & Fedorov, A. V. (2021). Eastern equatorial Pacific warming delayed by aerosols and thermostat response to CO2 increase. Nature Climate Change, 11(8), Article 8. https://doi.org/10.1038/s41558-021-01101-x

Heede, U. K., & Fedorov, A. V. (2023a). Colder Eastern Equatorial Pacific and Stronger Walker Circulation in the Early 21st Century: Separating the Forced Response to Global Warming From Natural Variability. Geophysical Research Letters, 50(3), e2022GL101020. https://doi.org/10.1029/2022GL101020

Heede, U. K., & Fedorov, A. V. (2023b). Towards understanding the robust strengthening of ENSO and more frequent extreme El Niño events in CMIP6 global warming simulations. Climate Dynamics, 61(5), 3047–3060. https://doi.org/10.1007/s00382-023-06856-x

Henson, S. A., Cael, B. B., Allen, S. R., & Dutkiewicz, S. (2021). Future phytoplankton diversity in a changing climate. Nature Communications, 12(1), Article 1. https://doi.org/10.1038/s41467-021-25699-w

Henson, S. A., Laufkötter, C., Leung, S., Giering, S. L. C., Palevsky, H. I., & Cavan, E. L. (2022). Uncertain response of ocean biological carbon export in a changing world. Nature Geoscience, 15(4), Article 4. https://doi.org/10.1038/s41561-022-00927-0

Hersbach, H., Bel, B., Berrisford, P., Blavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., & Thépaut, J.-N. (2023). ERA5 monthly averaged data on single levels from 1940 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), (Accessed on 25-10-2023). https://doi.org/10.24381/cds.f17050d7

Heuzé, C. (2020). Antarctic Bottom Water and North Atlantic Deep Water in CMIP6 models [Preprint]. Deep Ocean/Numerical Models/All Geographic Regions/Temperature, Salinity and Density Fields. https://doi.org/10.5194/os-2020-66

Hopcroft, P. O., & Valdes, P. J. (2021). Paleoclimate-conditioning reveals a North Africa land-atmosphere tipping point. Proceedings of the National Academy of Sciences of the United States of America, 118(45), e2108783118. https://doi.org/10.1073/pnas.2108783118

Hou, A., Bahr, A., Raddatz, J., Voigt, S., Greule, M., Albuquerque, A. L., Chiessi, C. M., & Friedrich, O. (2020). Insolation and Greenhouse Gas Forcing of the South American Monsoon System Across Three Glacial-Interglacial Cycles. Geophysical Research Letters, 47(14), e2020GL087948. https://doi.org/10.1029/2020GL087948

Hrudya, P. H., Varikoden, H., & Vishnu, R. (2021). A review on the Indian summer monsoon rainfall, variability and its association with ENSO and IOD. Meteorology and Atmospheric Physics, 133(1), 1–14. https://doi.org/10.1007/s00703-020-00734-5

Hsu, P., Li, T., Luo, J.-J., Murakami, H., Kitoh, A., & Zhao, M. (2012). Increase of global monsoon area and precipitation under global warming: A robust signal? Geophysical Research Letters, 39(6). https://doi.org/10.1029/2012GL051037

Hsu, P., Li, T., Murakami, H., & Kitoh, A. (2013). Future change of the global monsoon revealed from 19 CMIP5 models. Journal of Geophysical Research: Atmospheres, 118(3), 1247–1260. https://doi.org/10.1002/jgrd.50145

Hu, S., & Fedorov, A. V. (2017). The extreme El Niño of 2015–2016 and the end of global warming hiatus. Geophysical Research Letters, 44(8), 3816–3824. https://doi.org/10.1002/2017GL072908

Huang, B., Thorne, P. w., Banzon, V. F., Boyer, T., Chepurin, G., Lawrimore, J. H., Menne, M. J., Smith, T. M., Vose, R. S., & Zhang, H.-M. (2017). NOAA Extended Reconstructed Sea Surface Temperature (ERSST), Version 5. NOAA National Centers for Environmental Information, Accessed on 2023-10-25 from NOAA/ESRL/PSD at their website https://www.esrl.noaa.gov/psd/. https://doi.org/doi:10.7289/V5T72FNM

Intergovernmental Panel On Climate Change. (2023). Climate Change 2021 – The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (1st ed.). Cambridge University Press. https://doi.org/10.1017/9781009157896

Jackson, L. C. (2013). Shutdown and recovery of the AMOC in a coupled global climate model: The role of the advective feedback. Geophysical Research Letters, 40(6), 1182–1188. https://doi.org/10.1002/grl.50289

Jackson, L. C., Alastrué de Asenjo, E., Bellomo, K., Danabasoglu, G., Haak, H., Hu, A., Jungclaus, J., Lee, W., Meccia, V. L., Saenko, O., Shao, A., & Swingedouw, D. (2023). Understanding AMOC stability: The North Atlantic Hosing Model Intercomparison Project. Geoscientific Model Development, 16(7), 1975–1995. https://doi.org/10.5194/gmd-16-1975-2023

Jackson, L. C., Kahana, R., Graham, T., Ringer, M. A., Woollings, T., Mecking, J. V., & Wood, R. A. (2015). Global and European climate impacts of a slowdown of the AMOC in a high resolution GCM. Climate Dynamics, 45(11), 3299–3316. https://doi.org/10.1007/s00382-015-2540-2

Jackson, L. C., & Wood, R. A. (2018). Hysteresis and Resilience of the AMOC in an Eddy-Permitting GCM. Geophysical Research Letters, 45(16), 8547–8556. https://doi.org/10.1029/2018GL078104

Jin, Q., & Wang, C. (2017). A revival of Indian summer monsoon rainfall since 2002. Nature Climate Change, 7(8), Article 8. https://doi.org/10.1038/nclimate3348

Jones, C., & Carvalho, L. M. V. (2013). Climate Change in the South American Monsoon System: Present Climate and CMIP5 Projections. Journal of Climate, 26(17), 6660–6678. https://doi.org/10.1175/JCLI-D-12-00412.1

Jones, C., Liddicoat, S., & Wiltshire, A. (2020). MOHC UKESM1.0-LL model output prepared for CMIP6 CDRMIP esm-ssp534-over [dataset]. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.12203

Kageyama, M., Merkel, U., Otto-Bliesner, B., Prange, M., Abe-Ouchi, A., Lohmann, G., Ohgaito, R., Roche, D. M., Singarayer, J., Swingedouw, D., & X Zhang. (2013). Climatic impacts of fresh water hosing under Last Glacial Maximum conditions: A multi-model study. Climate of the Past, 9(2), 935–953. https://doi.org/10.5194/cp-9-935-2013

Katzenberger, A., Schewe, J., Pongratz, J., & Levermann, A. (2021). Robust increase of Indian monsoon rainfall and its variability under future warming in CMIP6 models. Earth System Dynamics, 12(2), 367–386. https://doi.org/10.5194/esd-12-367-2021

Kelly, L. T., Giljohann, K. M., Duane, A., Aquilué, N., Archibald, S., Batllori, E., Bennett, A. F., Buckland, S. T., Canelles, Q., Clarke, M. F., Fortin, M.-J., Hermoso, V., Herrando, S., Keane, R. E., Lake, F. K., McCarthy, M. A., Morán-Ordóñez, A., Parr, C. L., Pausas, J. G., … Brotons, L. (2020). Fire and biodiversity in the Anthropocene. Science, 370(6519), eabb0355. https://doi.org/10.1126/science.abb0355

Kelly, S. J., Popova, E., Aksenov, Y., Marsh, R., & Yool, A. (2020). They Came From the Pacific: How Changing Arctic Currents Could Contribute to an Ecological Regime Shift in the Atlantic Ocean. Earth’s Future, 8(4), e2019EF001394. https://doi.org/10.1029/2019EF001394

Kennedy, D., Parker, T., Woollings, T., Harvey, B., & Shaffrey, L. (2016). The response of high-impact blocking weather systems to climate change. Geophysical Research Letters, 43(13), 7250–7258. https://doi.org/10.1002/2016GL069725

Kilbourne, K. H., Wanamaker, A. D., Moffa-Sanchez, P., Reynolds, D. J., Amrhein, D. E., Butler, P. G., Gebbie, G., Goes, M., Jansen, M. F., Little, C. M., Mette, M., Moreno-Chamarro, E., Ortega, P., Otto-Bliesner, B. L., Rossby, T., Scourse, J., & Whitney, N. M. (2022). Atlantic circulation change still uncertain. Nature Geoscience, 15(3), Article 3. https://doi.org/10.1038/s41561-022-00896-4

Koelling, J., Atamanchuk, D., Karstensen, J., Handmann, P., & Wallace, D. W. R. (2022). Oxygen export to the deep ocean following Labrador Sea Water formation. Biogeosciences, 19(2), 437–454. https://doi.org/10.5194/bg-19-437-2022

Konare, A., Zakey, A. S., Solmon, F., Giorgi, F., Rauscher, S., Ibrah, S., & Bi, X. (2008). A regional climate modeling study of the effect of desert dust on the West African monsoon. Journal of Geophysical Research: Atmospheres, 113(D12). https://doi.org/10.1029/2007JD009322

Kornhuber, K., & Tamarin-Brodsky, T. (2021). Future Changes in Northern Hemisphere Summer Weather Persistence Linked to Projected Arctic Warming. Geophysical Research Letters, 48(4), e2020GL091603. https://doi.org/10.1029/2020GL091603

Kucharski, F., Zeng, N., & Kalnay, E. (2013). A further assessment of vegetation feedback on decadal Sahel rainfall variability. Climate Dynamics, 40(5), 1453–1466. https://doi.org/10.1007/s00382-012-1397-x

Kuhlbrodt, T., Titz, S., Feudel, U., & Rahmstorf, S. (2001). A simple model of seasonal open ocean convection. Ocean Dynamics, 52(1), 36–49. https://doi.org/10.1007/s10236-001-8175-3

Kumar, S. K., & Seshadri, A. K. (2022). Origins and suppression of bifurcation phenomena in lower-order monsoon models. Earth System Dynamics Discussions, 1–19. https://doi.org/10.5194/esd-2022-30

Kwiatkowski, L., Torres, O., Bopp, L., Aumont, O., Chamberlain, M., Christian, J. R., Dunne, J. P., Gehlen, M., Ilyina, T., John, J. G., Lenton, A., Li, H., Lovenduski, N. S., Orr, J. C., Palmieri, J., Santana-Falcón, Y., Schwinger, J., Séférian, R., Stock, C. A., … Ziehn, T. (2020). Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections. Biogeosciences, 17(13), 3439–3470. https://doi.org/10.5194/bg-17-3439-2020

Latif, M., Sun, J., Visbeck, M., & Hadi Bordbar, M. (2022). Natural variability has dominated Atlantic Meridional Overturning Circulation since 1900. Nature Climate Change, 12(5), Article 5. https://doi.org/10.1038/s41558-022-01342-4

Lawman, A. E., Di Nezio, P. N., Partin, J. W., Dee, S. G., Thirumalai, K., & Quinn, T. M. (2022). Unraveling forced responses of extreme El Niño variability over the Holocene. Science Advances, 8(9), eabm4313. https://doi.org/10.1126/sciadv.abm4313

Leconte, J., Forget, F., Charnay, B., Wordsworth, R., & Pottier, A. (2013). Increased insolation threshold for runaway greenhouse processes on Earth-like planets. Nature, 504(7479), Article 7479. https://doi.org/10.1038/nature12827

Lee, J.-Y., Marotzke, J., Bala, G., Cao, L., Corti, S., Dunne, J. P., Engelbrecht, F., Fischer, E., Fyfe, J. C., Jones, C., Maycook, A., Mutemi, J., Ndiaye, O., Panickal, S., & Zhou, T. (2021). Chapter 4: Future Global Climate: Scenario-based Projections and Near-term Information. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.

Lee, J.-Y., & Wang, B. (2014). Future change of global monsoon in the CMIP5. Climate Dynamics, 42(1), 101–119. https://doi.org/10.1007/s00382-012-1564-0

Lehner, F., Born, A., Raible, C. C., & Stocker, T. F. (2013). Amplified Inception of European Little Ice Age by Sea Ice–Ocean–Atmosphere Feedbacks. Journal of Climate, 26(19), 7586–7602. https://doi.org/10.1175/JCLI-D-12-00690.1

Lenton, T. M., Held, H., Kriegler, E., Hall, J. W., Lucht, W., Rahmstorf, S., & Schellnhuber, H. J. (2008). Tipping elements in the Earth’s climate system. Proceedings of the National Academy of Sciences, 105(6), 1786–1793. https://doi.org/10.1073/pnas.0705414105

Levermann, A., & Born, A. (2007). Bistability of the Atlantic subpolar gyre in a coarse-resolution climate model. Geophysical Research Letters, 34(24). https://doi.org/10.1029/2007GL031732

Levermann, A., Schewe, J., Petoukhov, V., & Held, H. (2009). Basic mechanism for abrupt monsoon transitions. Proceedings of the National Academy of Sciences, 106(49), 20572–20577. https://doi.org/10.1073/pnas.0901414106

Lewis, S. C., LeGrande, A. N., Kelley, M., & Schmidt, G. A. (2010). Water vapour source impacts on oxygen isotope variability in tropical precipitation during Heinrich events. Climate of the Past, 6(3), 325–343. https://doi.org/10.5194/cp-6-325-2010

L’Heureux, M. L., Tippett, M. K., Kumar, A., Butler, A. H., Ciasto, L. M., Ding, Q., Harnos, K. J., & Johnson, N. C. (2017). Strong Relations Between ENSO and the Arctic Oscillation in the North American Multimodel Ensemble. Geophysical Research Letters, 44(22), 11,654-11,662. https://doi.org/10.1002/2017GL074854

Liebmann, B., & Mechoso, C. R. (2011). The south american monsoon system. In The Global Monsoon System: Vol. Volume 5 (pp. 137–157). WORLD SCIENTIFIC. https://doi.org/10.1142/9789814343411_0009

Lin, P., Pickart, R. S., Heorton, H., Tsamados, M., Itoh, M., & Kikuchi, T. (2023). Recent state transition of the Arctic Ocean’s Beaufort Gyre. Nature Geoscience, 16(6), Article 6. https://doi.org/10.1038/s41561-023-01184-5

Liu, W., Fedorov, A. V., Xie, S.-P., & Hu, S. (2020). Climate impacts of a weakened Atlantic Meridional Overturning Circulation in a warming climate. Science Advances, 6(26), eaaz4876. https://doi.org/10.1126/sciadv.aaz4876

Liu, W., Xie, S.-P., Liu, Z., & Zhu, J. (2017). Overlooked possibility of a collapsed Atlantic Meridional Overturning Circulation in warming climate. Science Advances, 3(1), e1601666. https://doi.org/10.1126/sciadv.1601666

Lloret, F., & Batllori, E. (2021). Climate-Induced Global Forest Shifts due to Heatwave-Drought. In J. G. Canadell & R. B. Jackson (Eds.), Ecosystem Collapse and Climate Change (pp. 155–186). Springer International Publishing. https://doi.org/10.1007/978-3-030-71330-0_7

Lobelle, D., Beaulieu, C., Livina, V., Sévellec, F., & Frajka-Williams, E. (2020). Detectability of an AMOC Decline in Current and Projected Climate Changes. Geophysical Research Letters, 47(20), e2020GL089974. https://doi.org/10.1029/2020GL089974

Lohmann, J., & Ditlevsen, P. D. (2021). Risk of tipping the overturning circulation due to increasing rates of ice melt. Proceedings of the National Academy of Sciences, 118(9), e2017989118. https://doi.org/10.1073/pnas.2017989118

Ma, S., & Zhou, T. (2016). Robust Strengthening and Westward Shift of the Tropical Pacific Walker Circulation during 1979–2012: A Comparison of 7 Sets of Reanalysis Data and 26 CMIP5 Models. Journal of Climate, 29(9), 3097–3118. https://doi.org/10.1175/JCLI-D-15-0398.1

Marshall, J., Donohoe, A., Ferreira, D., & McGee, D. (2014). The ocean’s role in setting the mean position of the Inter-Tropical Convergence Zone. Climate Dynamics, 42(7), 1967–1979. https://doi.org/10.1007/s00382-013-1767-z

Mauritsen, T., & Stevens, B. (2015). Missing iris effect as a possible cause of muted hydrological change and high climate sensitivity in models. Nature Geoscience, 8(5), Article 5. https://doi.org/10.1038/ngeo2414

McGee, D., deMenocal, P. B., Winckler, G., Stuut, J. B. W., & Bradtmiller, L. I. (2013). The magnitude, timing and abruptness of changes in North African dust deposition over the last 20,000yr. Earth and Planetary Science Letters, 371–372, 163–176. https://doi.org/10.1016/j.epsl.2013.03.054

McManus, J. F., Francois, R., Gherardi, J.-M., Keigwin, L. D., & Brown-Leger, S. (2004). Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature, 428(6985), Article 6985. https://doi.org/10.1038/nature02494

McPhaden, M. J. (Ed.). (2020). El Niño southern oscillation in a changing climate (First edition). Wiley-American Geophysical Union.

Mecking, J. V., Drijfhout, S. S., Jackson, L. C., & Andrews, M. B. (2017). The effect of model bias on Atlantic freshwater transport and implications for AMOC bi-stability. Tellus A: Dynamic Meteorology and Oceanography, 69(1), 1299910. https://doi.org/10.1080/16000870.2017.1299910

Mecking, J. V., Drijfhout, S. S., Jackson, L. C., & Graham, T. (2016). Stable AMOC off state in an eddy-permitting coupled climate model. Climate Dynamics, 47(7), 2455–2470. https://doi.org/10.1007/s00382-016-2975-0

Michel, S. L. L., Swingedouw, D., Ortega, P., Gastineau, G., Mignot, J., McCarthy, G., & Khodri, M. (2022). Early warning signal for a tipping point suggested by a millennial Atlantic Multidecadal Variability reconstruction. Nature Communications, 13(1), Article 1. https://doi.org/10.1038/s41467-022-32704-3

Moffa-Sánchez, P., Moreno-Chamarro, E., Reynolds, D. J., Ortega, P., Cunningham, L., Swingedouw, D., Amrhein, D. E., Halfar, J., Jonkers, L., Jungclaus, J. H., Perner, K., Wanamaker, A., & Yeager, S. (2019). Variability in the Northern North Atlantic and Arctic Oceans Across the Last Two Millennia: A Review. Paleoceanography and Paleoclimatology, 34(8), 1399–1436. https://doi.org/10.1029/2018PA003508

Mohtadi, M., Prange, M., Oppo, D. W., De Pol-Holz, R., Merkel, U., Zhang, X., Steinke, S., & Lückge, A. (2014). North Atlantic forcing of tropical Indian Ocean climate. Nature, 509(7498), Article 7498. https://doi.org/10.1038/nature13196

Mohtadi, M., Prange, M., & Steinke, S. (2016). Palaeoclimatic insights into forcing and response of monsoon rainfall. Nature, 533(7602), Article 7602. https://doi.org/10.1038/nature17450

Morrill, C., Overpeck, J. T., & Cole, J. E. (2003). A synthesis of abrupt changes in the Asian summer monsoon since the last deglaciation. The Holocene, 13(4), 465–476. https://doi.org/10.1191/0959683603hl639ft

Mulitza, S., Chiessi, C. M., Schefuß, E., Lippold, J., Wichmann, D., Antz, B., Mackensen, A., Paul, A., Prange, M., Rehfeld, K., Werner, M., Bickert, T., Frank, N., Kuhnert, H., Lynch-Stieglitz, J., Portilho-Ramos, R. C., Sawakuchi, A. O., Schulz, M., Schwenk, T., … Zhang, Y. (2017). Synchronous and proportional deglacial changes in Atlantic meridional overturning and northeast Brazilian precipitation. Paleoceanography, 32(6), 622–633. https://doi.org/10.1002/2017PA003084

Muller, C., Yang, D., Craig, G., Cronin, T., Fildier, B., Haerter, J. O., Hohenegger, C., Mapes, B., Randall, D., Shamekh, S., & Sherwood, S. C. (2022). Spontaneous Aggregation of Convective Storms. Annual Review of Fluid Mechanics, 54(1), 133–157. https://doi.org/10.1146/annurev-fluid-022421-011319

Myers, T. A., Mechoso, C. R., Cesana, G. V., DeFlorio, M. J., & Waliser, D. E. (2018). Cloud Feedback Key to Marine Heatwave off Baja California. Geophysical Research Letters, 45(9), 4345–4352. https://doi.org/10.1029/2018GL078242

Naughten, K. A., Holland, P. R., & De Rydt, J. (2023). Unavoidable future increase in West Antarctic ice-shelf melting over the twenty-first century. Nature Climate Change, 1–7. https://doi.org/10.1038/s41558-023-01818-x

Neukermans, G., Oziel, L., & Babin, M. (2018). Increased intrusion of warming Atlantic water leads to rapid expansion of temperate phytoplankton in the Arctic. Global Change Biology, 24(6), 2545–2553. https://doi.org/10.1111/gcb.14075

New, A. L., Smeed, D. A., Czaja, A., Blaker, A. T., Mecking, J. V., Mathews, J. P., & Sanchez-Franks, A. (2021). Labrador Slope Water connects the subarctic with the Gulf Stream. Environmental Research Letters, 16(8), 084019. https://doi.org/10.1088/1748-9326/ac1293

Orihuela-Pinto, B., England, M. H., & Taschetto, A. S. (2022). Interbasin and interhemispheric impacts of a collapsed Atlantic Overturning Circulation. Nature Climate Change, 12(6), Article 6. https://doi.org/10.1038/s41558-022-01380-y

Osman, M. B., Coats, S., Das, S. B., McConnell, J. R., & Chellman, N. (2021). North Atlantic jet stream projections in the context of the past 1,250 years. Proceedings of the National Academy of Sciences, 118(38), e2104105118. https://doi.org/10.1073/pnas.2104105118

Osman, M. B., Das, S. B., Trusel, L. D., Evans, M. J., Fischer, H., Grieman, M. M., Kipfstuhl, S., McConnell, J. R., & Saltzman, E. S. (2019). Industrial-era decline in subarctic Atlantic productivity. Nature, 569(7757), Article 7757. https://doi.org/10.1038/s41586-019-1181-8

Otterman, J. (1974). Baring High-Albedo Soils by Overgrazing: A Hypothesized Desertification Mechanism. Science, 186(4163), 531–533. https://doi.org/10.1126/science.186.4163.531

Oudar, T., Cattiaux, J., & Douville, H. (2020). Drivers of the Northern Extratropical Eddy-Driven Jet Change in CMIP5 and CMIP6 Models. Geophysical Research Letters, 47(8), e2019GL086695. https://doi.org/10.1029/2019GL086695

Oziel, L., Baudena, A., Ardyna, M., Massicotte, P., Randelhoff, A., Sallée, J.-B., Ingvaldsen, R. B., Devred, E., & Babin, M. (2020). Faster Atlantic currents drive poleward expansion of temperate phytoplankton in the Arctic Ocean. Nature Communications, 11(1), Article 1. https://doi.org/10.1038/s41467-020-15485-5

Paik, S., An, S.-I., Min, S.-K., King, A. D., & Shin, J. (2023). Hysteretic Behavior of Global to Regional Monsoon Area Under CO2 Ramp-Up and Ramp-Down. Earth’s Future, 11(7), e2022EF003434. https://doi.org/10.1029/2022EF003434

Pausata, F. S. R., Li, C., Wettstein, J. J., Kageyama, M., & Nisancioglu, K. H. (2011). The key role of topography in altering North Atlantic atmospheric circulation during the last glacial period. Climate of the Past, 7(4), 1089–1101. https://doi.org/10.5194/cp-7-1089-2011

Petoukhov, V., Rahmstorf, S., Petri, S., & Schellnhuber, H. J. (2013). Quasiresonant amplification of planetary waves and recent Northern Hemisphere weather extremes. Proceedings of the National Academy of Sciences, 110(14), 5336–5341. https://doi.org/10.1073/pnas.1222000110

Qasmi, S., & Ribes, A. (2022). Reducing uncertainty in local temperature projections. Science Advances, 8(41), eabo6872. https://doi.org/10.1126/sciadv.abo6872

Rahmstorf, S. (2001). A simple model of seasonal open ocean convection. Ocean Dynamics, 52(1), 26–35. https://doi.org/10.1007/s10236-001-8174-4

Rahmstorf, S., Box, J. E., Feulner, G., Mann, M. E., Robinson, A., Rutherford, S., & Schaffernicht, E. J. (2015). Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nature Climate Change, 5(5), Article 5. https://doi.org/10.1038/nclimate2554

Rahmstorf, S., Crucifix, M., Ganopolski, A., Goosse, H., Kamenkovich, I., Knutti, R., Lohmann, G., Marsh, R., Mysak, L. A., Wang, Z., & Weaver, A. J. (2005). Thermohaline circulation hysteresis: A model intercomparison. Geophysical Research Letters, 32(23). https://doi.org/10.1029/2005GL023655

Regan, H. C., Lique, C., & Armitage, T. W. K. (2019). The Beaufort Gyre Extent, Shape, and Location Between 2003 and 2014 From Satellite Observations. Journal of Geophysical Research: Oceans, 124(2), 844–862. https://doi.org/10.1029/2018JC014379

Rhein, M., Steinfeldt, R., Kieke, D., Stendardo, I., & Yashayaev, I. (2017). Ventilation variability of Labrador Sea Water and its impact on oxygen and anthropogenic carbon: A review. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 375(2102), 20160321. https://doi.org/10.1098/rsta.2016.0321

Riboldi, J., Lott, F., D’Andrea, F., & Rivière, G. (2020). On the Linkage Between Rossby Wave Phase Speed, Atmospheric Blocking, and Arctic Amplification. Geophysical Research Letters, 47(19), e2020GL087796. https://doi.org/10.1029/2020GL087796

Richardson, K., Steffen, W., Lucht, W., Bendtsen, J., Cornell, S. E., Donges, J. F., Drüke, M., Fetzer, I., Bala, G., von Bloh, W., Feulner, G., Fiedler, S., Gerten, D., Gleeson, T., Hofmann, M., Huiskamp, W., Kummu, M., Mohan, C., Nogués-Bravo, D., … Rockström, J. (2023). Earth beyond six of nine planetary boundaries. Science Advances, 9(37), eadh2458. https://doi.org/10.1126/sciadv.adh2458

Ridge, S. M., & McKinley, G. A. (2021). Ocean carbon uptake under aggressive emission mitigation. Biogeosciences, 18(8), 2711–2725. https://doi.org/10.5194/bg-18-2711-2021

Rockström, J., Gupta, J., Qin, D., Lade, S. J., Abrams, J. F., Andersen, L. S., Armstrong McKay, D. I., Bai, X., Bala, G., Bunn, S. E., Ciobanu, D., DeClerck, F., Ebi, K., Gifford, L., Gordon, C., Hasan, S., Kanie, N., Lenton, T. M., Loriani, S., … Zhang, X. (2023). Safe and just Earth system boundaries. Nature, 619(7968), Article 7968. https://doi.org/10.1038/s41586-023-06083-8

Rodríguez-Fonseca, B., Mohino, E., Mechoso, C. R., Caminade, C., Biasutti, M., Gaetani, M., Garcia-Serrano, J., Vizy, E. K., Cook, K., Xue, Y., Polo, I., Losada, T., Druyan, L., Fontaine, B., Bader, J., Doblas-Reyes, F. J., Goddard, L., Janicot, S., Arribas, A., … Voldoire, A. (2015). Variability and Predictability of West African Droughts: A Review on the Role of Sea Surface Temperature Anomalies. Journal of Climate, 28(10), 4034–4060. https://doi.org/10.1175/JCLI-D-14-00130.1

Rousi, E., Kornhuber, K., Beobide-Arsuaga, G., Luo, F., & Coumou, D. (2022). Accelerated western European heatwave trends linked to more-persistent double jets over Eurasia. Nature Communications, 13(1), Article 1. https://doi.org/10.1038/s41467-022-31432-y

Roxy, M. K., Ritika, K., Terray, P., Murtugudde, R., Ashok, K., & Goswami, B. N. (2015). Drying of Indian subcontinent by rapid Indian Ocean warming and a weakening land-sea thermal gradient. Nature Communications, 6(1), Article 1. https://doi.org/10.1038/ncomms8423

Sanchez Goñi, M. F., & Harrison, S. P. (2010a). Millennial-scale climate variability and vegetation changes during the Last Glacial: Concepts and terminology. Quaternary Science Reviews, 29(21), 2823–2827. https://doi.org/10.1016/j.quascirev.2009.11.014

Sanchez Goñi, M. F., & Harrison, S. P. (2010b). Millennial-scale climate variability and vegetation changes during the Last Glacial: Concepts and terminology. Quaternary Science Reviews, 29(21), 2823–2827. https://doi.org/10.1016/j.quascirev.2009.11.014

Sarnthein, M., Stattegger, K., Dreger, D., Erlenkeuser, H., Grootes, P., Haupt, B. J., Jung, S., Kiefer, T., Kuhnt, W., Pflaumann, U., Schäfer-Neth, C., Schulz, H., Schulz, M., Seidov, D., Simstich, J., Kreveld, S. van, Vogelsang, E., Völker, A., & Weinelt, M. (2001a). Fundamental Modes and Abrupt Changes in North Atlantic Circulation and Climate over the last 60 ky—Concepts, Reconstruction and Numerical Modeling. In P. Schäfer, W. Ritzrau, M. Schlüter, & J. Thiede (Eds.), The Northern North Atlantic: A Changing Environment (pp. 365–410). Springer. https://doi.org/10.1007/978-3-642-56876-3_21

Sarnthein, M., Stattegger, K., Dreger, D., Erlenkeuser, H., Grootes, P., Haupt, B. J., Jung, S., Kiefer, T., Kuhnt, W., Pflaumann, U., Schäfer-Neth, C., Schulz, H., Schulz, M., Seidov, D., Simstich, J., Kreveld, S. van, Vogelsang, E., Völker, A., & Weinelt, M. (2001b). Fundamental Modes and Abrupt Changes in North Atlantic Circulation and Climate over the last 60 ky—Concepts, Reconstruction and Numerical Modeling. In P. Schäfer, W. Ritzrau, M. Schlüter, & J. Thiede (Eds.), The Northern North Atlantic: A Changing Environment (pp. 365–410). Springer. https://doi.org/10.1007/978-3-642-56876-3_21

Schewe, J., Levermann, A., & Cheng, H. (2012). A critical humidity threshold for monsoon transitions. Climate of the Past, 8(2), 535–544. https://doi.org/10.5194/cp-8-535-2012

Schmittner, A., Brook, E. J., & Ahn, J. (2007). Impact of the ocean’s Overturning circulation on atmospheric CO2. In Ocean Circulation: Mechanisms and Impacts—Past and Future Changes of Meridional Overturning (pp. 315–334). American Geophysical Union (AGU). https://doi.org/10.1029/173GM20

Schneider, T., Kaul, C. M., & Pressel, K. G. (2019). Possible climate transitions from breakup of stratocumulus decks under greenhouse warming. Nature Geoscience, 12(3), Article 3. https://doi.org/10.1038/s41561-019-0310-1

Schulz, von Rad, Erlenkeuser, & von Rad. (1998). Correlation between Arabian Sea and Greenland climate oscillations of the past 110,000 years. Nature, 393(6680), Article 6680. https://doi.org/10.1038/31750

Schwinger, J., Asaadi, A., Goris, N., & Lee, H. (2022). Possibility for strong northern hemisphere high-latitude cooling under negative emissions. Nature Communications, 13(1), Article 1. https://doi.org/10.1038/s41467-022-28573-5

Screen, J. A., & Simmonds, I. (2013). Exploring links between Arctic amplification and mid-latitude weather. Geophysical Research Letters, 40(5), 959–964. https://doi.org/10.1002/grl.50174

Seager, R., Henderson, N., & Cane, M. (2022). Persistent Discrepancies between Observed and Modeled Trends in the Tropical Pacific Ocean. Journal of Climate, 35(14), 4571–4584. https://doi.org/10.1175/JCLI-D-21-0648.1

Seeley, J. T., & Wordsworth, R. D. (2021). Episodic deluges in simulated hothouse climates. Nature, 599(7883), Article 7883. https://doi.org/10.1038/s41586-021-03919-z

Serreze, M. C., & Meier, W. N. (2019). The Arctic’s sea ice cover: Trends, variability, predictability, and comparisons to the Antarctic. Annals of the New York Academy of Sciences, 1436(1), 36–53. https://doi.org/10.1111/nyas.13856

Seshadri, A. K. (2017). Energetics and monsoon bifurcations. Climate Dynamics, 48(1), 561–576. https://doi.org/10.1007/s00382-016-3094-7

Sgubin, G., Swingedouw, D., Drijfhout, S., Mary, Y., & Bennabi, A. (2017). Abrupt cooling over the North Atlantic in modern climate models. Nature Communications, 8(1), Article 1. https://doi.org/10.1038/ncomms14375

Shanahan, T. M., McKay, N. P., Hughen, K. A., Overpeck, J. T., Otto-Bliesner, B., Heil, C. W., King, J., Scholz, C. A., & Peck, J. (2015). The time-transgressive termination of the African Humid Period. Nature Geoscience, 8(2), 140–144. https://doi.org/10.1038/ngeo2329

Shepherd, A., Ivins, E., Rignot, E., Smith, B., van den Broeke, M., Velicogna, I., Whitehouse, P., Briggs, K., Joughin, I., Krinner, G., Nowicki, S., Payne, T., Scambos, T., Schlegel, N., A, G., Agosta, C., Ahlstrøm, A., Babonis, G., Barletta, V. R., … The IMBIE Team. (2020). Mass balance of the Greenland Ice Sheet from 1992 to 2018. Nature, 579(7798), Article 7798. https://doi.org/10.1038/s41586-019-1855-2

Shepherd, T. G. (2019). Storyline approach to the construction of regional climate change information. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 475(2225), 20190013. https://doi.org/10.1098/rspa.2019.0013

Sherwood, S. C., Webb, M. J., Annan, J. D., Armour, K. C., Forster, P. M., Hargreaves, J. C., Hegerl, G., Klein, S. A., Marvel, K. D., Rohling, E. J., Watanabe, M., Andrews, T., Braconnot, P., Bretherton, C. S., Foster, G. L., Hausfather, Z., von der Heydt, A. S., Knutti, R., Mauritsen, T., … Zelinka, M. D. (2020). An Assessment of Earth’s Climate Sensitivity Using Multiple Lines of Evidence. Reviews of Geophysics, 58(4), e2019RG000678. https://doi.org/10.1029/2019RG000678

Solmon, F., Mallet, M., Elguindi, N., Giorgi, F., Zakey, A., & Konaré, A. (2008). Dust aerosol impact on regional precipitation over western Africa, mechanisms and sensitivity to absorption properties. Geophysical Research Letters, 35(24). https://doi.org/10.1029/2008GL035900

Spooner, P. T., Thornalley, D. J. R., Oppo, D. W., Fox, A. D., Radionovskaya, S., Rose, N. L., Mallett, R., Cooper, E., & Roberts, J. M. (2020). Exceptional 20th Century Ocean Circulation in the Northeast Atlantic. Geophysical Research Letters, 47(10), e2020GL087577. https://doi.org/10.1029/2020GL087577

Srokosz, M., Baringer, M., Bryden, H., Cunningham, S., Delworth, T., Lozier, S., Marotzke, J., & Sutton, R. (2012). Past, Present, and Future Changes in the Atlantic Meridional Overturning Circulation. Bulletin of the American Meteorological Society, 93(11), 1663–1676. https://doi.org/10.1175/BAMS-D-11-00151.1

Stager, J. C., Ryves, D. B., Chase, B. M., & Pausata, F. S. R. (2011). Catastrophic Drought in the Afro-Asian Monsoon Region During Heinrich Event 1. Science, 331(6022), 1299–1302. https://doi.org/10.1126/science.1198322

Steffen, W., Richardson, K., Rockström, J., Cornell, S. E., Fetzer, I., Bennett, E. M., Biggs, R., Carpenter, S. R., de Vries, W., de Wit, C. A., Folke, C., Gerten, D., Heinke, J., Mace, G. M., Persson, L. M., Ramanathan, V., Reyers, B., & Sörlin, S. (2015). Planetary boundaries: Guiding human development on a changing planet. Science, 347(6223), 1259855. https://doi.org/10.1126/science.1259855

Stommel, H. (1961). Thermohaline Convection with Two Stable Regimes of Flow. Tellus, 13(2), 224–230. https://doi.org/10.1111/j.2153-3490.1961.tb00079.x

Swingedouw, D., Bily, A., Esquerdo, C., Borchert, L. F., Sgubin, G., Mignot, J., & Menary, M. (2021). On the risk of abrupt changes in the North Atlantic subpolar gyre in CMIP6 models. Annals of the New York Academy of Sciences, 1504(1), 187–201. https://doi.org/10.1111/nyas.14659

Swingedouw, D., Houssais, M.-N., Herbaut, C., Blaizot, A.-C., Devilliers, M., & Deshayes, J. (2022). AMOC Recent and Future Trends: A Crucial Role for Oceanic Resolution and Greenland Melting? Frontiers in Climate, 4. https://www.frontiersin.org/articles/10.3389/fclim.2022.838310

Swingedouw, D., Ifejika Speranza, C., Bartsch, A., Durand, G., Jamet, C., Beaugrand, G., & Conversi, A. (2020). Early Warning from Space for a Few Key Tipping Points in Physical, Biological, and Social-Ecological Systems. Surveys in Geophysics, 41(6), 1237–1284. https://doi.org/10.1007/s10712-020-09604-6

Terhaar, J., Torres, O., Bourgeois, T., & Kwiatkowski, L. (2021). Arctic Ocean acidification over the 21st century co-driven by anthropogenic carbon increases and freshening in the CMIP6 model ensemble. Biogeosciences, 18(6), 2221–2240. https://doi.org/10.5194/bg-18-2221-2021

The combined impact of global warming and AMOC collapse on the Amazon Rainforest. (2023, May 31). https://doi.org/10.21203/rs.3.rs-2673317/v1

The weakening summer circulation in the Northern Hemisphere mid-latitudes | Science. (n.d.). Retrieved October 26, 2023, from https://www.science.org/doi/10.1126/science.1261768

Tierney, J. E., Haywood, A. M., Feng, R., Bhattacharya, T., & Otto-Bliesner, B. L. (2019). Pliocene Warmth Consistent With Greenhouse Gas Forcing. Geophysical Research Letters, 46(15), 9136–9144. https://doi.org/10.1029/2019GL083802

Timmermann, A., An, S.-I., Kug, J.-S., Jin, F.-F., Cai, W., Capotondi, A., Cobb, K. M., Lengaigne, M., McPhaden, M. J., Stuecker, M. F., Stein, K., Wittenberg, A. T., Yun, K.-S., Bayr, T., Chen, H.-C., Chikamoto, Y., Dewitte, B., Dommenget, D., Grothe, P., … Zhang, X. (2018). El Niño–Southern Oscillation complexity. Nature, 559(7715), Article 7715. https://doi.org/10.1038/s41586-018-0252-6

Trenberth, K. E., Stepaniak, D. P., & Caron, J. M. (2000). The Global Monsoon as Seen through the Divergent Atmospheric Circulation. Journal of Climate, 13(22), 3969–3993. https://doi.org/10.1175/1520-0442(2000)013<3969:TGMAST>2.0.CO;2

Tziperman, E., & Farrell, B. (2009). Pliocene equatorial temperature: Lessons from atmospheric superrotation. Paleoceanography, 24(1). https://doi.org/10.1029/2008PA001652

van Westen, R. M., Kliphuis, M., & Dijkstra, H. A. (2023). New Physics-Based Early Warning Signal shows AMOC is on Tipping Course (arXiv:2308.01688). arXiv. https://doi.org/10.48550/arXiv.2308.01688

Venancio, I. M., Shimizu, M. H., Santos, T. P., Lessa, D. O., Portilho-Ramos, R. C., Chiessi, C. M., Crivellari, S., Mulitza, S., Kuhnert, H., Tiedemann, R., Vahlenkamp, M., Bickert, T., Sampaio, G., Albuquerque, A. L. S., Veiga, S., Nobre, P., & Nobre, C. (2020). Changes in surface hydrography at the western tropical Atlantic during the Younger Dryas. Global and Planetary Change, 184, 103047. https://doi.org/10.1016/j.gloplacha.2019.103047

Vera, C., Higgins, W., Amador, J., Ambrizzi, T., Garreaud, R., Gochis, D., Gutzler, D., Lettenmaier, D., Marengo, J., Mechoso, C. R., Nogues-Paegle, J., Dias, P. L. S., & Zhang, C. (2006). Toward a Unified View of the American Monsoon Systems. Journal of Climate, 19(20), 4977–5000. https://doi.org/10.1175/JCLI3896.1

Wang, B., Biasutti, M., Byrne, M. P., Castro, C., Chang, C.-P., Cook, K., Fu, R., Grimm, A. M., Ha, K.-J., Hendon, H., Kitoh, A., Krishnan, R., Lee, J.-Y., Li, J., Liu, J., Moise, A., Pascale, S., Roxy, M. K., Seth, A., … Zhou, T. (2021). Monsoons Climate Change Assessment. Bulletin of the American Meteorological Society, 102(1), E1–E19. https://doi.org/10.1175/BAMS-D-19-0335.1

Wang, B., & Ding, Q. (2008). Global monsoon: Dominant mode of annual variation in the tropics. Dynamics of Atmospheres and Oceans, 44(3), 165–183. https://doi.org/10.1016/j.dynatmoce.2007.05.002

Wang, B., Jin, C., & Liu, J. (2020). Understanding Future Change of Global Monsoons Projected by CMIP6 Models. Journal of Climate, 33(15), 6471–6489. https://doi.org/10.1175/JCLI-D-19-0993.1

Wang, B., Liu, J., Kim, H.-J., Webster, P. J., & Yim, S.-Y. (2012). Recent change of the global monsoon precipitation (1979–2008). Climate Dynamics, 39(5), 1123–1135. https://doi.org/10.1007/s00382-011-1266-z

Wang, G., Eltahir, E. A. B., Foley, J. A., Pollard, D., & Levis, S. (2004). Decadal variability of rainfall in the Sahel: Results from the coupled GENESIS-IBIS atmosphere-biosphere model. Climate Dynamics, 22(6), 625–637. https://doi.org/10.1007/s00382-004-0411-3

Wang, S., Foster, A., Lenz, E. A., Kessler, J. D., Stroeve, J. C., Anderson, L. O., Turetsky, M., Betts, R., Zou, S., Liu, W., Boos, W. R., & Hausfather, Z. (2023). Mechanisms and Impacts of Earth System Tipping Elements. Reviews of Geophysics, 61(1), e2021RG000757. https://doi.org/10.1029/2021RG000757

Wara, M. W., Ravelo, A. C., & Delaney, M. L. (2005). Permanent El Niño-like conditions during the Pliocene warm period. Science (New York, N.Y.), 309(5735), 758–761. https://doi.org/10.1126/science.1112596

Weijer, W., Cheng, W., Drijfhout, S. S., Fedorov, A. V., Hu, A., Jackson, L. C., Liu, W., McDonagh, E. L., Mecking, J. V., & Zhang, J. (2019). Stability of the Atlantic Meridional Overturning Circulation: A Review and Synthesis. Journal of Geophysical Research: Oceans, 124(8), 5336–5375. https://doi.org/10.1029/2019JC015083

White, R. H., Kornhuber, K., Martius, O., & Wirth, V. (2022). From Atmospheric Waves to Heatwaves: A Waveguide Perspective for Understanding and Predicting Concurrent, Persistent, and Extreme Extratropical Weather. Bulletin of the American Meteorological Society, 103(3), E923–E935. https://doi.org/10.1175/BAMS-D-21-0170.1

Wieners, C. E., Dijkstra, H. A., & de Ruijter, W. P. M. (2019). The interaction between the Western Indian Ocean and ENSO in CESM. Climate Dynamics, 52(9), 5153–5172. https://doi.org/10.1007/s00382-018-4438-2

Wills, R. C. J., Dong, Y., Proistosecu, C., Armour, K. C., & Battisti, D. S. (2022). Systematic Climate Model Biases in the Large-Scale Patterns of Recent Sea-Surface Temperature and Sea-Level Pressure Change. Geophysical Research Letters, 49(17), e2022GL100011. https://doi.org/10.1029/2022GL100011

Wirth, V., & Polster, C. (2021). The Problem of Diagnosing Jet Waveguidability in the Presence of Large-Amplitude Eddies. Journal of the Atmospheric Sciences, 78(10), 3137–3151. https://doi.org/10.1175/JAS-D-20-0292.1

Wood, R. A., Rodríguez, J. M., Smith, R. S., Jackson, L. C., & Hawkins, E. (2019). Observable, low-order dynamical controls on thresholds of the Atlantic meridional overturning circulation. Climate Dynamics, 53(11), 6815–6834. https://doi.org/10.1007/s00382-019-04956-1

World Meteorological Organization declares onset of El Niño conditions. (2023, July 3). https://public.wmo.int/en/media/press-release/world-meteorological-organization-declares-onset-of-el-ni%C3%B1o-conditions

Xie, S.-P., Deser, C., Vecchi, G. A., Ma, J., Teng, H., & Wittenberg, A. T. (2010). Global Warming Pattern Formation: Sea Surface Temperature and Rainfall. Journal of Climate, 23(4), 966–986. https://doi.org/10.1175/2009JCLI3329.1

Xue, Y. (1997). Biosphere feedback on regional climate in tropical North Africa. Quarterly Journal of the Royal Meteorological Society, 123(542), 1483–1515. https://doi.org/10.1002/qj.49712354203

Yan, M., & Liu, J. (2019). Physical processes of cooling and mega-drought during the 4.2&thinsp;ka&thinsp;BP event: Results from TraCE-21ka simulations. Climate of the Past, 15(1), 265–277. https://doi.org/10.5194/cp-15-265-2019

Yashayaev, I., & Loder, J. W. (2016). Recurrent replenishment of Labrador Sea Water and associated decadal-scale variability. Journal of Geophysical Research: Oceans, 121(11), 8095–8114. https://doi.org/10.1002/2016JC012046

Yool, A., Popova, E. E., & Coward, A. C. (2015). Future change in ocean productivity: Is the Arctic the new Atlantic? Journal of Geophysical Research: Oceans, 120(12), 7771–7790. https://doi.org/10.1002/2015JC011167

Zappa, G., & Shepherd, T. G. (2017). Storylines of Atmospheric Circulation Change for European Regional Climate Impact Assessment. Journal of Climate, 30(16), 6561–6577. https://doi.org/10.1175/JCLI-D-16-0807.1

Zeng, N., Neelin, J. D., Lau, K.-M., & Tucker, C. J. (1999). Enhancement of Interdecadal Climate Variability in the Sahel by Vegetation Interaction. Science, 286(5444), 1537–1540. https://doi.org/10.1126/science.286.5444.1537

Zhang, P., Jeong, J.-H., Yoon, J.-H., Kim, H., Wang, S.-Y. S., Linderholm, H. W., Fang, K., Wu, X., & Chen, D. (2020). Abrupt shift to hotter and drier climate over inner East Asia beyond the tipping point. Science, 370(6520), 1095–1099. https://doi.org/10.1126/science.abb3368

Zhang, R., & Thomas, M. (2021). Horizontal circulation across density surfaces contributes substantially to the long-term mean northern Atlantic Meridional Overturning Circulation. Communications Earth & Environment, 2(1), Article 1. https://doi.org/10.1038/s43247-021-00182-y

Zhao, C., Liu, X., Ruby Leung, L., & Hagos, S. (2011). Radiative impact of mineral dust on monsoon precipitation variability over West Africa. Atmospheric Chemistry and Physics, 11(5), 1879–1893. https://doi.org/10.5194/acp-11-1879-2011

Zhou, J., & Lau, K.-M. (1998). Does a Monsoon Climate Exist over South America? Journal of Climate, 11(5), 1020–1040. https://doi.org/10.1175/1520-0442(1998)011<1020:DAMCEO>2.0.CO;2

Zhu, C., Liu, Z., Zhang, S., & Wu, L. (2023). Likely accelerated weakening of Atlantic overturning circulation emerges in optimal salinity fingerprint. Nature Communications, 14(1), Article 1. https://doi.org/10.1038/s41467-023-36288-4

Zickfeld, K., Knopf, B., Petoukhov, V., & Schellnhuber, H. J. (2005). Is the Indian summer monsoon stable against global change? Geophysical Research Letters, 32(15). https://doi.org/10.1029/2005GL022771

Zika, J. D., Skliris, N., Blaker, A. T., Marsh, R., Nurser, A. J. G., & Josey, S. A. (2018). Improved estimates of water cycle change from ocean salinity: The key role of ocean warming. Environmental Research Letters, 13(7), 074036. https://doi.org/10.1088/1748-9326/aace42

Chapter 1.5

Armstrong McKay, D.I., Staal, A., Abrams, J.F., Winkelmann, R., Sakschewski, B., Loriani, S., Fetzer, I., Cornell, S.E., Rockström, J. and Lenton, T.M. (2022) ‘Exceeding 1.5 C global warming could trigger multiple climate tipping points’, Science, 377(6611), p. Eabn7950.  https://doi.org/10.1126/science.abn7950 

Årthun, M., Eldevik, T., Smedsrud, L., Skagseth, Ø. and Ingvaldsen, R. (2012) ‘Quantifying the influence of Atlantic heat on Barents Sea ice variability and retreat’, Journal of Climate, 25(13), pp. 4736–4743.  https://doi.org/10.1175/JCLI-D-11-00466.1

Ayarzagüena, B., Ineson, S., Dunstone, N.J., Baldwin, M.P. and Scaife, A.A. (2018) ‘Intraseasonal effects of el niño–southern oscillation on North Atlantic climate’, Journal of Climate, 31(21), pp. 8861–8873.  https://doi.org/10.1175/JCLI-D-18-0097.1

Bakker, P., Schmittner, A., Lenaerts, J., Abe-Ouchi, A., Bi, D., van den Broeke, M., Chan, W.-L., Hu, A., Beadling, R., Marsland, S., and others (2016) ‘Fate of the Atlantic Meridional Overturning Circulation: Strong decline under continued warming and Greenland melting’, Geophysical Research Letters, 43(23), pp. 12–252.  https://doi.org/10.1002/2016GL070457

Barker, S., Chen, J., Gong, X., Jonkers, L., Knorr, G. and Thornalley, D. (2015) ‘Icebergs not the trigger for North Atlantic cold events’, Nature, 520(7547), pp. 333–336.  https://doi.org/10.1038/nature14330

Barker, S. and Knorr, G. (2007) ‘Antarctic climate signature in the Greenland ice core record’, Proceedings of the National Academy of Sciences, 104(44), pp. 17278–17282.  https://doi.org/10.1073/pnas.0708494104

Barker, S. and Knorr, G. (2016) ‘A paleo-perspective on the AMOC as a tipping element’, PAGES Magazine, 24(1), pp. 14–15.  https://doi.org/10.22498/pages.24.1.14

Barker, S. and Knorr, G. (2021) ‘Millennial scale feedbacks determine the shape and rapidity of glacial termination’, Nature Communications, 12(1), p. 2273.  https://doi.org/10.1038/s41467-021-22388-6

Bastiaansen, R., Doelman, A., Eppinga, M.B. and Rietkerk, M. (2020) ‘The effect of climate change on the resilience of ecosystems with adaptive spatial pattern formation’, Ecology Letters, 23(3), pp. 414–429.  https://doi.org/10.1111/ele.13449

Baudena, M., Tuinenburg, O.A., Ferdinand, P.A. and Staal, A. (2021) ‘Effects of land-use change in the Amazon on precipitation are likely underestimated’, Global Change Biology, 27(21), pp. 5580–5587.  https://doi.org/10.1111/gcb.15810

Bellomo, K., Meccia, V.L., D’Agostino, R., Fabiano, F., Larson, S.M., von Hardenberg, J. and Corti, S. (2023) ‘Impacts of a weakened AMOC on precipitation over the Euro-Atlantic region in the EC-Earth3 climate model’, Climate Dynamics, pp. 1–20.  https://doi.org/10.1007/s00382-023-06754-2

Berk, J. van den, Drijfhout, S. and Hazeleger, W. (2021) ‘Circulation adjustment in the Arctic and Atlantic in response to Greenland and Antarctic mass loss’, Climate Dynamics, 57(7–8), pp. 1689–1707.  https://doi.org/10.1007/s00382-021-05755-3

Boulton, C.A., Lenton, T.M. and Boers, N. (2022) ‘Pronounced loss of Amazon rainforest resilience since the early 2000s’, Nature Climate Change, 12(3), pp. 271–278.  https://doi.org/10.1038/s41558-022-01287-8

Brönnimann, S., Xoplaki, E., Casty, C., Pauling, A. and Luterbacher, J. (2007) ‘ENSO influence on Europe during the last centuries’, Climate Dynamics, 28, pp. 181–197.  https://doi.org/10.1007/s00382-006-0175-z

Brovkin, V., Brook, E., Williams, J.W., Bathiany, S., Lenton, T.M., Barton, M., DeConto, R.M., Donges, J.F., Ganopolski, A., McManus, J., and others (2021) ‘Past abrupt changes, tipping points and cascading impacts in the Earth system’, Nature Geoscience, 14(8), pp. 550–558.  https://doi.org/10.1038/s41561-021-00790-5

Burke, K.D., Williams, J.W., Chandler, M.A., Haywood, A.M., Lunt, D.J. and Otto-Bliesner, B.L. (2018) ‘Pliocene and Eocene provide best analogs for near-future climates’, Proceedings of the National Academy of Sciences, 115(52), pp. 13288–13293.  https://doi.org/10.1073/pnas.1809600115

Cai, W., Borlace, S., Lengaigne, M., Van Rensch, P., Collins, M., Vecchi, G., Timmermann, A., Santoso, A., McPhaden, M.J., Wu, L., and others (2014) ‘Increasing frequency of extreme El Niño events due to greenhouse warming’, Nature Climate Change, 4(2), pp. 111–116.  https://doi.org/10.1038/nclimate2100

Cai, W., Santoso, A., Collins, M., Dewitte, B., Karamperidou, C., Kug, J.-S., Lengaigne, M., McPhaden, M.J., Stuecker, M.F., Taschetto, A.S., and others (2021) ‘Changing El Niño–Southern oscillation in a warming climate’, Nature Reviews Earth & Environment, 2(9), pp. 628–644.  https://doi.org/10.1038/s43017-021-00199-z

Cai, W., Santoso, A., Wang, G., Yeh, S.-W., An, S.-I., Cobb, K.M., Collins, M., Guilyardi, E., Jin, F.-F., Kug, J.-S., and others (2015) ‘ENSO and greenhouse warming’, Nature Climate Change, 5(9), pp. 849–859.  https://doi.org/10.1038/nclimate2743

Campos, M.C., Chiessi, C.M., Prange, M., Mulitza, S., Kuhnert, H., Paul, A., Venancio, I.M., Albuquerque, A.L.S., Cruz, F.W. and Bahr, A. (2019) ‘A new mechanism for millennial scale positive precipitation anomalies over tropical South America’, Quaternary Science Reviews, 225, p. 105990.  https://doi.org/10.1016/j.quascirev.2019.105990

Casas-Prat, M. and Wang, X.L. (2020) ‘Projections of extreme ocean waves in the Arctic and potential implications for coastal inundation and erosion’, Journal of Geophysical Research: Oceans, 125(8), p. e2019JC015745.  https://doi.org/10.1029/2019JC015745

Chemison, A., Defrance, D., Ramstein, G. and Caminade, C. (2022) ‘Impact of an acceleration of ice sheet melting on monsoon systems’, Earth System Dynamics, 13(3), pp. 1259–1287.  https://doi.org/10.5194/esd-13-1259-2022

Chemke, R., Ming, Y. and Yuval, J. (2022) ‘The intensification of winter mid-latitude storm tracks in the Southern Hemisphere’, Nature Climate Change, 12(6), pp. 553–557.  https://doi.org/10.1038/s41558-022-01368-8

Cheng, H., Edwards, R.L., Sinha, A., Spötl, C., Yi, L., Chen, S., Kelly, M., Kathayat, G., Wang, X., Li, X., and others (2016) ‘The Asian monsoon over the past 640,000 years and ice age terminations’, Nature, 534(7609), pp. 640–646.  https://doi.org/10.1038/nature18591

Chiessi, C.M., Mulitza, S., Paul, A., Pätzold, J., Groeneveld, J. and Wefer, G. (2008) ‘South Atlantic interocean exchange as the trigger for the Bølling warm event’, Geology, 36(12), pp. 919–922.  https://doi.org/10.1130/G24979A.1.

Ciemer, C., Winkelmann, R., Kurths, J. and Boers, N. (2021) ‘Impact of an AMOC weakening on the stability of the southern Amazon rainforest’, The European Physical Journal Special Topics, 230, pp. 3065–3073.  https://doi.org/10.1140/epjs/s11734-021-00186-x

Clement, A.C. and Peterson, L.C. (2008) ‘Mechanisms of abrupt climate change of the last glacial period’, Reviews of Geophysics, 46(4).  https://doi.org/10.1029/2006RG000204

Cobb, K.M., Westphal, N., Sayani, H.R., Watson, J.T., Di Lorenzo, E., Cheng, H., Edwards, R. and Charles, C.D. (2013) ‘Highly variable el Niño–southern oscillation throughout the holocene’, Science (New York, N.Y.), 339(6115), pp. 67–70.  https://doi.org/10.1126/science.1228246

Coxall, H.K., Huck, C.E., Huber, M., Lear, C.H., Legarda-Lisarri, A., O’regan, M., Sliwinska, K.K., Van De Flierdt, T., De Boer, A.M., Zachos, J.C., and others (2018) ‘Export of nutrient rich northern component water preceded early oligocene antarctic glaciation’, Nature Geoscience, 11(3), pp. 190–196.  https://doi.org/10.1038/s41561-018-0069-9

Coxall, H.K., Wilson, P.A., Pälike, H., Lear, C.H. and Backman, J. (2005) ‘Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean’, Nature, 433(7021), pp. 53–57.  https://doi.org/10.1038/nature03135

Crawford, A., Stroeve, J., Smith, A. and Jahn, A. (2021) ‘Arctic open-water periods are projected to lengthen dramatically by 2100’, Communications Earth & Environment, 2(1), p. 109.  https://doi.org/10.1038/s43247-021-00183-x

Daron, J.D. and Stainforth, D.A. (2013) ‘On predicting climate under climate change’, Environmental Research Letters, 8(3), p. 034021.  https://doi.org/10.1088/1748-9326/8/3/034021

Deb, P., Orr, A., Bromwich, D.H., Nicolas, J.P., Turner, J. and Hosking, J.S. (2018) ‘Summer drivers of atmospheric variability affecting ice shelf thinning in the Amundsen Sea Embayment, West Antarctica’, Geophysical Research Letters, 45(9), pp. 4124–4133.  https://doi.org/10.1029/2018GL077092

Defrance, D., Ramstein, G., Charbit, S., Vrac, M., Famien, A.M., Sultan, B., Swingedouw, D., Dumas, C., Gemenne, F., Alvarez-Solas, J., and others (2017) ‘Consequences of rapid ice sheet melting on the Sahelian population vulnerability’, Proceedings of the National Academy of Sciences, 114(25), pp. 6533–6538.  https://doi.org/10.1073/pnas.1619358114

Dekker, M.M., von Der Heydt, A.S. and Dijkstra, H.A. (2018) ‘Cascading transitions in the climate system’, Earth System Dynamics, 9(4), pp. 1243–1260.  https://doi.org/10.5194/esd-9-1243-2018

Delworth, T.L., Zeng, F., Vecchi, G.A., Yang, X., Zhang, L. and Zhang, R. (2016) ‘The North Atlantic Oscillation as a driver of rapid climate change in the Northern Hemisphere’, Nature Geoscience, 9(7), pp. 509–512.  https://doi.org/10.1038/ngeo2738

Docquier, D. and Koenigk, T. (2021) ‘A review of interactions between ocean heat transport and Arctic sea ice’, Environmental Research Letters, 16(12), p. 123002.  https://doi.org/10.1088/1748-9326/ac30be

Drüke, M., von Bloh, W., Petri, S., Sakschewski, B., Schaphoff, S., Forkel, M., Huiskamp, W., Feulner, G. and Thonicke, K. (2021) ‘CM2Mc-LPJmL v1. 0: biophysical coupling of a process-based dynamic vegetation model with managed land to a general circulation model’, Geoscientific Model Development, 14(6), pp. 4117–4141.  https://doi.org/10.5194/gmd-14-4117-2021

Duque-Villegas, M., Salazar, J.F. and Rendón, A.M. (2019) ‘Tipping the ENSO into a permanent El-Niño can trigger state transitions in global terrestrial ecosystems.’, Earth System Dynamics, 10(4).  https://doi.org/10.5194/esd-10-631-2019

Favier, L., Durand, G., Cornford, S.L., Gudmundsson, G.H., Gagliardini, O., Gillet-Chaulet, F., Zwinger, T., Payne, A. and Le Brocq, A.M. (2014) ‘Retreat of Pine Island Glacier controlled by marine ice-sheet instability’, Nature Climate Change, 4(2), pp. 117–121.  https://doi.org/10.1038/nclimate2094

Fletcher, W.J., Goni, M.F.S., Allen, J.R., Cheddadi, R., Combourieu-Nebout, N., Huntley, B., Lawson, I., Londeix, L., Magri, D., Margari, V., and others (2010) ‘Millennial-scale variability during the last glacial in vegetation records from Europe’, Quaternary Science Reviews, 29(21–22), pp. 2839–2864.  https://doi.org/10.1016/j.quascirev.2009.11.015

Frieler, K., Meinshausen, M., Golly, A., Mengel, M., Lebek, K., Donner, S. and Hoegh-Guldberg, O. (2013) ‘Limiting global warming to 2 C is unlikely to save most coral reefs’, Nature Climate Change, 3(2), pp. 165–170.  https://doi.org/10.1038/nclimate1674

Ganopolski, A. and Rahmstorf, S. (2001) ‘Rapid changes of glacial climate simulated in a coupled climate model’, Nature, 409(6817), pp. 153–158.  https://doi.org/10.1038/35051500

Gatti, L.V., Basso, L.S., Miller, J.B., Gloor, M., Gatti Domingues, L., Cassol, H.L., Tejada, G., Aragão, L.E., Nobre, C., Peters, W., and others (2021) ‘Amazonia as a carbon source linked to deforestation and climate change’, Nature, 595(7867), pp. 388–393.  https://doi.org/10.1038/s41586-021-03629-6

Gildor, H. and Tziperman, E. (2003) ‘Sea-ice switches and abrupt climate change’, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 361(1810), pp. 1935–1944.  https://doi.org/10.1098/rsta.2003.1244

Gomez, N., Weber, M.E., Clark, P.U., Mitrovica, J.X. and Han, H.K. (2020) ‘Antarctic ice dynamics amplified by Northern Hemisphere sea-level forcing’, Nature, 587(7835), pp. 600–604.  https://doi.org/10.1038/s41586-020-2916-2

Grigoriev, M. (2019) ‘Coastal retreat rates at the Laptev Sea key monitoring sites’, PANGAEA. doi: https://doi. org/10.1594/PANGAEA, 905519.  https://doi.org/10.1594/PANGAEA.905519

Häggi, C., Chiessi, C.M., Merkel, U., Mulitza, S., Prange, M., Schulz, M. and Schefuß, E. (2017) ‘Response of the Amazon rainforest to late Pleistocene climate variability’, Earth and Planetary Science Letters, 479, pp. 50–59.  https://doi.org/10.1016/j.epsl.2017.09.013

Henry, L., McManus, J., Curry, W., Roberts, N., Piotrowski, A. and Keigwin, L. (2016) ‘North Atlantic ocean circulation and abrupt climate change during the last glaciation’, Science (New York, N.Y.), 353(6298), pp. 470–474.  https://doi.org/10.1126/science.aaf5529

Hooker, J.J., Collinson, M.E. and Sille, N.P. (2004) ‘Eocene–Oligocene mammalian faunal turnover in the Hampshire Basin, UK: calibration to the global time scale and the major cooling event’, Journal of the Geological Society, 161(2), pp. 161–172.  https://doi.org/10.1144/0016-764903-091

Hošeková, L., Eidam, E., Panteleev, G., Rainville, L., Rogers, W.E. and Thomson, J. (2021) ‘Landfast ice and coastal wave exposure in northern Alaska’, Geophysical Research Letters, 48(22), p. e2021GL095103.  https://doi.org/10.1029/2021GL095103

Houk, P., Yalon, A., Maxin, S., Starsinic, C., McInnis, A., Gouezo, M., Golbuu, Y. and Van Woesik, R. (2020) ‘Predicting coral-reef futures from el niño and pacific decadal oscillation events’, Scientific Reports, 10(1), p. 7735.  https://doi.org/10.1038/s41598-020-64411-8

Hughes, T.P., Anderson, K.D., Connolly, S.R., Heron, S.F., Kerry, J.T., Lough, J.M., Baird, A.H., Baum, J.K., Berumen, M.L., Bridge, T.C., and others (2018) ‘Spatial and temporal patterns of mass bleaching of corals in the Anthropocene’, Science (New York, N.Y.), 359(6371), pp. 80–83.  https://doi.org/10.1126/science.aan8048

Hughes, T.P., Carpenter, S., Rockström, J., Scheffer, M. and Walker, B. (2013) ‘Multiscale regime shifts and planetary boundaries’, Trends in Ecology & Evolution, 28(7), pp. 389–395.  https://doi.org/10.1016/j.tree.2013.05.019

Hutchinson, D.K., Coxall, H.K., Lunt, D.J., Steinthorsdottir, M., De Boer, A.M., Baatsen, M., von der Heydt, A., Huber, M., Kennedy-Asser, A.T., Kunzmann, L., and others (2020) ‘The Eocene-Oligocene transition: a review of marine and terrestrial proxy data, models and model-data comparisons’, Climate of the Past Discussions, 2020, pp. 1–71.  https://doi.org/10.5194/cp-17-269-2021

Irrgang, A.M., Bendixen, M., Farquharson, L.M., Baranskaya, A.V., Erikson, L.H., Gibbs, A.E., Ogorodov, S.A., Overduin, P.P., Lantuit, H., Grigoriev, M.N., and others (2022) ‘Drivers, dynamics and impacts of changing Arctic coasts’, Nature Reviews Earth & Environment, 3(1), pp. 39–54.  https://doi.org/10.1038/s43017-021-00232-1

Jackson, L., Kahana, R., Graham, T., Ringer, M., Woollings, T., Mecking, J. and Wood, R. (2015) ‘Global and European climate impacts of a slowdown of the AMOC in a high resolution GCM’, Climate Dynamics, 45(11), pp. 3299–3316.  https://doi.org/10.1007/s00382-015-2540-2

Jackson, L.C. and Wood, R.A. (2018) ‘Timescales of AMOC decline in response to fresh water forcing’, Climate Dynamics, 51(4), pp. 1333–1350.  https://doi.org/10.1007/s00382-017-3957-6

Jehn, F.U., Schneider, M., Wang, J.R., Kemp, L. and Breuer, L. (2021) ‘Betting on the best case: Higher end warming is underrepresented in research’, Environmental Research Letters, 16(8), p. 084036.  https://doi.org/10.1088/1748-9326/ac13ef

Jiménez-Muñoz, J.C., Mattar, C., Barichivich, J., Santamaría-Artigas, A., Takahashi, K., Malhi, Y., Sobrino, J.A. and Schrier, G. van der (2016) ‘Record-breaking warming and extreme drought in the Amazon rainforest during the course of El Niño 2015–2016’, Scientific Reports, 6(1), p. 33130.  https://doi.org/10.1038/srep33130

Joughin, I., Smith, B.E. and Medley, B. (2014) ‘Marine ice sheet collapse potentially under way for the Thwaites Glacier Basin, West Antarctica’, Science (New York, N.Y.), 344(6185), pp. 735–738.  https://doi.org/10.1126/science.1249055

Kanner, L.C., Burns, S.J., Cheng, H. and Edwards, R.L. (2012) ‘High-latitude forcing of the South American summer monsoon during the last glacial’, Science (New York, N.Y.), 335(6068), pp. 570–573.  https://doi.org/10.1126/science.1213397

Kemp, L., Xu, C., Depledge, J., Ebi, K.L., Gibbins, G., Kohler, T.A., Rockström, J., Scheffer, M., Schellnhuber, H.J., Steffen, W., and others (2022) ‘Climate Endgame: Exploring catastrophic climate change scenarios’, Proceedings of the National Academy of Sciences, 119(34), p. E2108146119.  https://doi.org/10.1073/pnas.2108146119

Kim, H.-J., An, S.-I., Park, J.-H., Sung, M.-K., Kim, D., Choi, Y. and Kim, J.-S. (2023) ‘North Atlantic Oscillation impact on the Atlantic Meridional Overturning Circulation shaped by the mean state’, npj Climate and Atmospheric Science, 6(1), p. 25.  https://doi.org/10.1038/s41612-023-00354-x

Kleinen, T., Gromov, S., Steil, B. and Brovkin, V. (2023) ‘Atmospheric methane since the last glacial maximum was driven by wetland sources’, Climate of the Past, 19(5), pp. 1081–1099.  https://doi.org/10.5194/cp-19-1081-2023

Klose, A.K., Karle, V., Winkelmann, R. and Donges, J.F. (2020) ‘Emergence of cascading dynamics in interacting tipping elements of ecology and climate’, Royal Society Open Science, 7(6), p. 200599.  https://doi.org/10.1098/rsos.200599

Klose, A.K., Wunderling, N., Winkelmann, R. and Donges, J.F. (2021) ‘What do we mean,“tipping cascade”?’, Environmental Research Letters, 16(12), p. 125011.  https://doi.org/10.1088/1748-9326/ac3955

Knorr, G. and Lohmann, G. (2007) ‘Rapid transitions in the Atlantic thermohaline circulation triggered by global warming and meltwater during the last deglaciation’, Geochemistry, Geophysics, Geosystems, 8(12).   https://doi.org/10.1029/2007GC001604

Köhler, P., Knorr, G. and Bard, E. (2014) ‘Permafrost thawing as a possible source of abrupt carbon release at the onset of the Bølling/Allerød’, Nature Communications, 5(1), p. 5520.  https://doi.org/10.1038/ncomms6520

Kopp, R.E., Mitrovica, J.X., Griffies, S.M., Yin, J., Hay, C.C. and Stouffer, R.J. (2010) ‘The impact of Greenland melt on local sea levels: a partially coupled analysis of dynamic and static equilibrium effects in idealized water-hosing experiments: a letter’, Climatic Change, 103, pp. 619–625.  https://doi.org/10.1007/s10584-010-9935-1

Krawczyk, H., Zinke, J., Browne, N., Struck, U., McIlwain, J., O’Leary, M. and Garbe-Schönberg, D. (2020) ‘Corals reveal ENSO-driven synchrony of climate impacts on both terrestrial and marine ecosystems in northern Borneo’, Scientific Reports, 10(1), p. 3678.  https://doi.org/10.1038/s41598-020-60525-1

Kretschmer, M., Coumou, D., Donges, J.F. and Runge, J. (2016) ‘Using causal effect networks to analyze different Arctic drivers of midlatitude winter circulation’, Journal of Climate, 29(11), pp. 4069–4081.  https://doi.org/10.1175/JCLI-D-15-0654.1

Kriegler, E., Hall, J.W., Held, H., Dawson, R. and Schellnhuber, H.J. (2009) ‘Imprecise probability assessment of tipping points in the climate system’, Proceedings of the National Academy of Sciences, 106(13), pp. 5041–5046.  https://doi.org/10.1073/pnas.0809117106

Kukla, T., Ahlström, A., Maezumi, S.Y., Chevalier, M., Lu, Z., Winnick, M.J. and Chamberlain, C.P. (2021) ‘The resilience of Amazon tree cover to past and present drying’, Global and Planetary Change, 202, p. 103520.  https://doi.org/10.1016/j.gloplacha.2021.103520

Le Nohaïc, M., Ross, C.L., Cornwall, C.E., Comeau, S., Lowe, R., McCulloch, M.T. and Schoepf, V. (2017) ‘Marine heatwave causes unprecedented regional mass bleaching of thermally resistant corals in northwestern Australia’, Scientific Reports, 7(1), p. 14999.  https://doi.org/10.1038/s41598-017-14794-y

Lear, C.H., Bailey, T.R., Pearson, P.N., Coxall, H.K. and Rosenthal, Y. (2008) ‘Cooling and ice growth across the Eocene-Oligocene transition’, Geology, 36(3), pp. 251–254.  https://doi.org/10.1130/G24584A.1

Lee, J.-Y., Marotzke, J., Bala, G., Cao, L., Corti, S., Dunne, J.P., Engelbrecht, F., Fischer, E., Fyfe, J.C., Jones, C., and others (2021) Future global climate: scenario-based projections and near-term information (pp. 553-672). Cambridge University Press.  https://doi.org/10.1017/9781009157896.006

Lenton, T.M., Rockström, J., Gaffney, O., Rahmstorf, S., Richardson, K., Steffen, W. and Schellnhuber, H.J. (2019) ‘Climate tipping points—too risky to bet against’, Nature, 575, pp. 592–595.  https://doi.org/10.1038/d41586-019-03595-0

Li, C., Battisti, D.S. and Bitz, C.M. (2010) ‘Can North Atlantic sea ice anomalies account for Dansgaard–Oeschger climate signals?’, Journal of Climate, 23(20), pp. 5457–5475.  https://doi.org/10.1175/2010JCLI3409.1

Li, Q., Marshall, J., Rye, C.D., Romanou, A., Rind, D. and Kelley, M. (2023) ‘Global climate impacts of greenland and antarctic meltwater: A comparative study’, Journal of Climate, 36(11), pp. 3571–3590.  https://doi.org/10.1175/JCLI-D-22-0433.1

Liljedahl, A.K., Boike, J., Daanen, R.P., Fedorov, A.N., Frost, G.V., Grosse, G., Hinzman, L.D., Iijma, Y., Jorgenson, J.C., Matveyeva, N., and others (2016) ‘Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology’, Nature Geoscience, 9(4), pp. 312–318.  https://doi.org/10.1038/ngeo2674

Liu, T., Chen, Dean, Yang, L., Meng, J., Wang, Z., Ludescher, J., Fan, J., Yang, S., Chen, Deliang, Kurths, J., and others (2023) ‘Teleconnections among tipping elements in the Earth system’, Nature Climate Change, 13(1), pp. 67–74.  https://doi.org/10.1038/s41558-022-01558-4 

Liu, W., Fedorov, A.V., Xie, S.-P. and Hu, S. (2020) ‘Climate impacts of a weakened atlantic meridional overturning circulation in a warming climate’, Science Advances, 6(26), p. Eaaz4876.  https://doi.org/10.1126/sciadv.aaz4876

Liu, Z., Otto-Bliesner, B., He, F., Brady, E., Tomas, R., Clark, P., Carlson, A., Lynch-Stieglitz, J., Curry, W., Brook, E., and others (2009) ‘Transient simulation of last deglaciation with a new mechanism for Bølling-Allerød warming’, Science (New York, N.Y.), 325(5938), pp. 310–314.  https://doi.org/10.1126/science.1171041

Lohmann, J. (2019) ‘Prediction of dansgaard-oeschger events from greenland dust records’, Geophysical Research Letters, 46(21), pp. 12427–12434.   https://doi.org/10.1029/2019GL085133

Lohmann, J. and Ditlevsen, P.D. (2021) ‘Risk of tipping the overturning circulation due to increasing rates of ice melt’, Proceedings of the National Academy of Sciences, 118(9), p. E2017989118.  https://doi.org/10.1073/pnas.2017989118

Lough, J., Anderson, K. and Hughes, T. (2018) ‘Increasing thermal stress for tropical coral reefs: 1871–2017’, Scientific Reports, 8(1), p. 6079.  https://doi.org/10.1038/s41598-018-24530-9

Lovejoy, T.E. and Nobre, C. (2018) ‘Amazon tipping point’, Science Advances, 4(2), p. Eaat2340.  https://doi.org/10.1126/sciadv.aat2340

MacAyeal, D.R. (1993) ‘Binge/purge oscillations of the Laurentide ice sheet as a cause of the North Atlantic’s Heinrich events’, Paleoceanography, 8(6), pp. 775–784.  https://doi.org/10.1029/93PA02200

Mahendra, N., Chowdary, J.S., Darshana, P., Sunitha, P., Parekh, A. and Gnanaseelan, C. (2021) ‘Interdecadal modulation of interannual ENSO-Indian summer monsoon rainfall teleconnections in observations and CMIP6 models: Regional patterns’, International Journal of Climatology, 41(4), pp. 2528–2552.  https://doi.org/10.1002/joc.6973

Manabe, S. and Stouffer, R.J. (1995) ‘Simulation of abrupt climate change induced by freshwater input to the North Atlantic Ocean’, Nature, 378(6553), pp. 165–167.  https://doi.org/10.1038/378165a0

Marcott, S.A., Bauska, T.K., Buizert, C., Steig, E.J., Rosen, J.L., Cuffey, K.M., Fudge, T., Severinghaus, J.P., Ahn, J., Kalk, M.L., and others (2014) ‘Centennial-scale changes in the global carbon cycle during the last deglaciation’, Nature, 514(7524), pp. 616–619.  https://doi.org/10.1038/nature13799

Martrat, B., Grimalt, J.O., Shackleton, N.J., de Abreu, L., Hutterli, M.A. and Stocker, T.F. (2007) ‘Four climate cycles of recurring deep and surface water destabilizations on the Iberian margin’, Science (New York, N.Y.), 317(5837), pp. 502–507.  https://doi.org/10.1126/science.1139994

Masson-Delmotte, V.P., Zhai, A., Pirani, S.L., Connors, C., Péan, S., Berger, N., Caud, Y., Chen, L., Goldfarb, M.I., Gomis, M., Huang, K., Leitzell, E., Lonnoy, J.B.R., Matthews, T.K., Maycock, T., Waterfield, O., Yelekci, R.Y. and Zhou, B. (eds. ) (2021) Climate change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. Cambridge University Press.  https://doi.org/10.1017/9781009157896

McGowan, H. and Theobald, A. (2023) ‘Atypical weather patterns cause coral bleaching on the Great Barrier Reef, Australia during the 2021–2022 La Niña’, Scientific Reports, 13(1), p. 6397.  https://doi.org/10.1038/s41598-023-33613-1

McManus, J.F., Francois, R., Gherardi, J.-M., Keigwin, L.D. and Brown-Leger, S. (2004) ‘Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes’, Nature, 428(6985), pp. 834–837.  https://doi.org/10.1038/nature02494

McPhaden, M.J., Zebiak, S.E. and Glantz, M.H. (2006) ‘ENSO as an integrating concept in earth science’, Science (New York, N.Y.), 314(5806), pp. 1740–1745.  https://doi.org/10.1126/science.1132588

Mecking, J., Drijfhout, S.S., Jackson, L.C. and Graham, T. (2016) ‘Stable AMOC off state in an eddy-permitting coupled climate model’, Climate Dynamics, 47, pp. 2455–2470.  https://doi.org/10.1007/s00382-016-2975-0

Mitrovica, J.X., Gomez, N. and Clark, P.U. (2009) ‘The sea-level fingerprint of West Antarctic collapse’, Science (New York, N.Y.), 323(5915), pp. 753–753.  https://doi.org/10.1126/science.1166510

Muñiz-Castillo, A.I., Rivera-Sosa, A., Chollett, I., Eakin, C.M., Andrade-Gómez, L., McField, M. and Arias-González, J.E. (2019) ‘Three decades of heat stress exposure in Caribbean coral reefs: a new regional delineation to enhance conservation’, Scientific Reports, 9(1), p. 11013.  https://doi.org/10.1038/s41598-019-47307-0

Murphy, J.M., Sexton, D.M., Barnett, D.N., Jones, G.S., Webb, M.J., Collins, M. and Stainforth, D.A. (2004) ‘Quantification of modelling uncertainties in a large ensemble of climate change simulations’, Nature, 430(7001), pp. 768–772.  https://doi.org/10.1038/nature02771

Nian, D., Bathiany, S., Ben-Yami, M., Blaschke, L., Hirota, M., Rodrigues, R. and Boers, N. (2023) ‘The combined impact of global warming and AMOC collapse on the Amazon Rainforest’, ResearchSquare [preprint], <a href=”https://www.researchsquare.com/article/rs-2673317/v1″>https://www.researchsquare.com/article/rs-2673317/v1</a> [Preprint].  https://doi.org/10.21203/rs.3.rs-2673317/v1

Nicolas, J.P., Vogelmann, A.M., Scott, R.C., Wilson, A.B., Cadeddu, M.P., Bromwich, D.H., Verlinde, J., Lubin, D., Russell, L.M., Jenkinson, C., and others (2017) ‘January 2016 extensive summer melt in West Antarctica favoured by strong El Niño’, Nature Communications, 8(1), p. 15799.  https://doi.org/10.1038/ncomms15799

Niederdrenk, A.L. and Notz, D. (2018) ‘Arctic sea ice in a 1.5°C warmer world’, Geophysical Research Letters, 45(4), pp. 1963–1971.  https://doi.org/10.1002/2017GL076159

Nielsen, D.M., Dobrynin, M., Baehr, J., Razumov, S. and Grigoriev, M. (2020) ‘Coastal erosion variability at the southern Laptev Sea linked to winter sea ice and the Arctic Oscillation’, Geophysical Research Letters, 47(5), p. e2019GL086876.  https://doi.org/10.1029/2019GL086876 

Nielsen, D.M., Pieper, P., Barkhordarian, A., Overduin, P., Ilyina, T., Brovkin, V., Baehr, J. and Dobrynin, M. (2022) ‘Increase in Arctic coastal erosion and its sensitivity to warming in the twenty-first century’, Nature Climate Change, 12(3), pp. 263–270.  https://doi.org/10.1038/s41558-022-01281-0

Nilsson-Kerr, K., Anand, P., Sexton, P., Leng, M., Misra, S., Clemens, S. and Hammond, S. (2019) ‘Role of Asian summer monsoon subsystems in the inter-hemispheric progression of deglaciation’, Nature Geoscience, 12(4), pp. 290–295.  https://doi.org/10.1038/s41561-019-0319-5

Nitzbon, J., Westermann, S., Langer, M., Martin, L.C., Strauss, J., Laboor, S. and Boike, J. (2020) ‘Fast response of cold ice-rich permafrost in northeast Siberia to a warming climate’, Nature Communications, 11(1), p. 2201.  https://doi.org/10.1038/s41467-020-15725-8

Nobre, C.A., Sampaio, G., Borma, L.S., Castilla-Rubio, J.C., Silva, J.S. and Cardoso, M. (2016) ‘Land-use and climate change risks in the Amazon and the need of a novel sustainable development paradigm’, Proceedings of the National Academy of Sciences, 113(39), pp. 10759–10768.  https://doi.org/10.1073/pnas.1605516113

North Greenland Ice Core Project members (NGRIP) (2004) ‘High-resolution record of Northern Hemisphere climate extending into the last interglacial period’, Nature, 431(7005), pp. 147–151.  https://doi.org/10.1038/nature02805

Novello, V.F., Cruz, F.W., Vuille, M., Stríkis, N.M., Edwards, R.L., Cheng, H., Emerick, S., De Paula, M.S., Li, X., Barreto, E. de S., and others (2017) ‘A high-resolution history of the south american monsoon from last glacial maximum to the holocene’, Scientific Reports, 7(1), p. 44267.  https://doi.org/10.1038/srep44267

Obura, D.O., Bigot, L. and Benzoni, F. (2018) ‘Coral responses to a repeat bleaching event in Mayotte in 2010’, PeerJ, 6, p. E5305.  https://doi.org/10.7717/peerj.5305

Onarheim, I.H., Eldevik, T., Årthun, M., Ingvaldsen, R.B. and Smedsrud, L.H. (2015) ‘Skillful prediction of Barents Sea ice cover’, Geophysical Research Letters, 42(13), pp. 5364–5371.  https://doi.org/10.1002/2015GL064359

Orihuela-Pinto, B., England, M.H. and Taschetto, A.S. (2022) ‘Interbasin and interhemispheric impacts of a collapsed atlantic overturning circulation’, Nature Climate Change, 12(6), pp. 558–565.  https://doi.org/10.1038/s41558-022-01380-y

Palacio-Castro, A.M., Smith, T.B., Brandtneris, V., Snyder, G.A., van Hooidonk, R., Maté, J.L., Manzello, D., Glynn, P.W., Fong, P. and Baker, A.C. (2023) ‘Increased dominance of heat-tolerant symbionts creates resilient coral reefs in near-term ocean warming’, Proceedings of the National Academy of Sciences, 120(8), p. E2202388120.  https://doi.org/10.1073/pnas.2202388120

Pandey, P., Dwivedi, S., Goswami, B. and Kucharski, F. (2020) ‘A new perspective on ENSO-Indian summer monsoon rainfall relationship in a warming environment’, Climate Dynamics, 55, pp. 3307–3326.  https://doi.org/10.1007/s00382-020-05452-7

Pedersen, R.A. and Christensen, J.H. (2019) ‘Attributing Greenland warming patterns to regional Arctic sea ice loss’, Geophysical Research Letters, 46(17–18), pp. 10495–10503.  https://doi.org/10.1029/2019GL083828

Pedro, J.B., Jochum, M., Buizert, C., He, F., Barker, S. and Rasmussen, S.O. (2018) ‘Beyond the bipolar seesaw: Toward a process understanding of interhemispheric coupling’, Quaternary Science Reviews, 192, pp. 27–46.  https://doi.org/10.1016/j.quascirev.2018.05.005

Polyakov, I.V., Pnyushkov, A.V., Alkire, M.B., Ashik, I.M., Baumann, T.M., Carmack, E.C., Goszczko, I., Guthrie, J., Ivanov, V.V., Kanzow, T., and others (2017) ‘Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean’, Science (New York, N.Y.), 356(6335), pp. 285–291.  https://doi.org/10.1126/science.aai8204

Pörtner, H.-O., Roberts, D.C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E. and Weyer, N. (2019) ‘The ocean and cryosphere in a changing climate’, IPCC special report on the ocean and cryosphere in a changing climate, 1155.  https://doi.org/10.1017/9781009157964

Prado, L.F., Wainer, I., Chiessi, C.M., Ledru, M.-P. and Turcq, B. (2013) ‘A mid-Holocene climate reconstruction for eastern South America’, Climate of the Past, 9(5), pp. 2117–2133.  https://doi.org/10.5194/cp-9-2117-2013

Rietkerk, M., Bastiaansen, R., Banerjee, S., van de Koppel, J., Baudena, M. and Doelman, A. (2021) ‘Evasion of tipping in complex systems through spatial pattern formation’, Science (New York, N.Y.), 374(6564), p. Eabj0359.  https://doi.org/10.1126/science.abj0359

Rocha, J.C., Peterson, G., Bodin, Ö. and Levin, S. (2018) ‘Cascading regime shifts within and across scales’, Science (New York, N.Y.), 362(6421), pp. 1379–1383.  https://doi.org/10.1126/science.aat7850

Runge, J., Nowack, P., Kretschmer, M., Flaxman, S. and Sejdinovic, D. (2019) ‘Detecting and quantifying causal associations in large nonlinear time series datasets’, Science Advances, 5(11), p. Eaau4996.  https://doi.org/10.1126/sciadv.aau4996

Runge, J., Petoukhov, V., Donges, J.F., Hlinka, J., Jajcay, N., Vejmelka, M., Hartman, D., Marwan, N., Paluš, M. and Kurths, J. (2015) ‘Identifying causal gateways and mediators in complex spatio-temporal systems’, Nature Communications, 6(1), pp. 1–10.  https://doi.org/10.1038/ncomms9502

Ruth, U., Bigler, M., Röthlisberger, R., Siggaard-Andersen, M.-L., Kipfstuhl, S., Goto-Azuma, K., Hansson, M.E., Johnsen, S.J., Lu, H. and Steffensen, J.P. (2007) ‘Ice core evidence for a very tight link between North Atlantic and east Asian glacial climate’, Geophysical Research Letters, 34(3).  https://doi.org/10.1029/2006GL027876

Sadai, S., Condron, A., DeConto, R. and Pollard, D. (2020) ‘Future climate response to Antarctic Ice Sheet melt caused by anthropogenic warming’, Science Advances, 6(39), p. Eaaz1169.  https://doi.org/10.1126/sciadv.aaz1169

Sadatzki, H., Maffezzoli, N., Dokken, T.M., Simon, M.H., Berben, S.M., Fahl, K., Kjær, H.A., Spolaor, A., Stein, R., Vallelonga, P., and others (2020) ‘Rapid reductions and millennial-scale variability in Nordic Seas sea ice cover during abrupt glacial climate changes’, Proceedings of the National Academy of Sciences, 117(47), pp. 29478–29486.  https://doi.org/10.1073/pnas.2005849117

Schleussner, C.-F., Lissner, T.K., Fischer, E.M., Wohland, J., Perrette, M., Golly, A., Rogelj, J., Childers, K., Schewe, J., Frieler, K., and others (2016) ‘Differential climate impacts for policy-relevant limits to global warming: the case of 1.5 C and 2 C’, Earth System Dynamics, 7(2), pp. 327–351.  https://doi.org/10.5194/esd-7-327-2016

Schneider, T., Kaul, C.M. and Pressel, K.G. (2019) ‘Possible climate transitions from breakup of stratocumulus decks under greenhouse warming’, Nature Geoscience, 12(3), pp. 163–167.  https://doi.org/10.1038/s41561-019-0310-1

Schoof, C. (2007) ‘Ice sheet grounding line dynamics: Steady states, stability, and hysteresis’, Journal of Geophysical Research: Earth Surface, 112(F3), pp. 1–19.  https://doi.org/10.1029/2006JF000664

Scott, R.C., Nicolas, J.P., Bromwich, D.H., Norris, J.R. and Lubin, D. (2019) ‘Meteorological drivers and large-scale climate forcing of West Antarctic surface melt’, Journal of Climate, 32(3), pp. 665–684.  https://doi.org/10.1175/JCLI-D-18-0233.1

Seidov, D., Stouffer, R.J. and Haupt, B.J. (2005) ‘Is there a simple bi-polar ocean seesaw?’, Global and Planetary Change, 49(1–2), pp. 19–27.  https://doi.org/10.1016/j.gloplacha.2005.05.001

Sévellec, F., Fedorov, A.V. and Liu, W. (2017) ‘Arctic sea-ice decline weakens the Atlantic meridional overturning circulation’, Nature Climate Change, 7(8), pp. 604–610.  https://doi.org/10.1038/nclimate3353

Sinet, S., von der Heydt, A. and Dijkstra, H. (2023) ‘AMOC stabilization under the interaction with tipping polar ice sheets’, Geophysical Research Letters, 50(2), p. e2022GL100305.  https://doi.org/10.1029/2022GL100305

Solomon, A., Heuzé, C., Rabe, B., Bacon, S., Bertino, L., Heimbach, P., Inoue, J., Iovino, D., Mottram, R., Zhang, X., and others (2021) ‘Freshwater in the arctic ocean 2010–2019’, Ocean Science, 17(4), pp. 1081–1102.  https://doi.org/10.5194/os-2020-113

Srivastava, G., Chakraborty, A. and Nanjundiah, R.S. (2019) ‘Multidecadal see-saw of the impact of ENSO on Indian and West African summer monsoon rainfall’, Climate Dynamics, 52, pp. 6633–6649.  https://doi.org/10.1007/s00382-018-4535-2

Staal, A., Fetzer, I., Wang-Erlandsson, L., Bosmans, J.H., Dekker, S.C., van Nes, E.H., Rockström, J. and Tuinenburg, O.A. (2020) ‘Hysteresis of tropical forests in the 21st century’, Nature Communications, 11(1), pp. 1–8.  https://doi.org/10.1038/s41467-020-18728-7

Staal, A., Tuinenburg, O.A., Bosmans, J.H., Holmgren, M., van Nes, E.H., Scheffer, M., Zemp, D.C., Dekker, S.C., and others (2018) ‘Forest-rainfall cascades buffer against drought across the Amazon’, Nature Climate Change, 8(6), pp. 539–543.  https://doi.org/10.1038/s41558-018-0177-y

Stainforth, D.A., Downing, T.E., Washington, R., Lopez, A. and New, M. (2007) ‘Issues in the interpretation of climate model ensembles to inform decisions’, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365(1857), pp. 2163–2177.  https://doi.org/10.1098/rsta.2007.2073

Steffen, W., Rockström, J., Richardson, K., Lenton, T.M., Folke, C., Liverman, D., Summerhayes, C.P., Barnosky, A.D., Cornell, S.E., Crucifix, M., and others (2018) ‘Trajectories of the Earth System in the Anthropocene’, Proceedings of the National Academy of Sciences, 115(33), pp. 8252–8259.  https://doi.org/10.1073/pnas.1810141115

Stouffer, R.J., Seidov, D. and Haupt, B.J. (2007) ‘Climate response to external sources of freshwater: North Atlantic versus the Southern Ocean’, Journal of Climate, 20(3), pp. 436–448.  https://doi.org/10.1175/JCLI4015.1

Stouffer, R.J., Yin, J., Gregory, J., Dixon, K., Spelman, M., Hurlin, W., Weaver, A., Eby, M., Flato, G., Hasumi, H., and others (2006) ‘Investigating the causes of the response of the thermohaline circulation to past and future climate changes’, Journal of Climate, 19(8), pp. 1365–1387.  https://doi.org/10.1175/JCLI3689.1

Sun, Y., Clemens, S.C., Morrill, C., Lin, X., Wang, X. and An, Z. (2012) ‘Influence of Atlantic meridional overturning circulation on the East Asian winter monsoon’, Nature Geoscience, 5(1), pp. 46–49.  https://doi.org/10.1038/ngeo1326

Swingedouw, D., Braconnot, P. and Marti, O. (2006) ‘Sensitivity of the Atlantic Meridional Overturning Circulation to the melting from northern glaciers in climate change experiments’, Geophysical Research Letters, 33(7).  https://doi.org/10.1029/2006GL025765

Swingedouw, D., Fichefet, T., Goosse, H. and Loutre, M.-F. (2009) ‘Impact of transient freshwater releases in the Southern Ocean on the AMOC and climate’, Climate Dynamics, 33, pp. 365–381.  https://doi.org/10.1007/s00382-008-0496-1

Swingedouw, D., Fichefet, T., Huybrechts, P., Goosse, H., Driesschaert, E. and Loutre, M.-F. (2008) ‘Antarctic ice-sheet melting provides negative feedbacks on future climate warming’, Geophysical Research Letters, 35(17).  https://doi.org/10.1029/2008GL034410

Swingedouw, D., Rodehacke, C.B., Behrens, E., Menary, M., Olsen, S.M., Gao, Y., Mikolajewicz, U., Mignot, J. and Biastoch, A. (2013) ‘Decadal fingerprints of freshwater discharge around Greenland in a multi-model ensemble’, Climate Dynamics, 41, pp. 695–720.  https://doi.org/10.1007/s00382-012-1479-9

Tigchelaar, M., von Der Heydt, A. and Dijkstra, H. (2011) ‘A new mechanism for the two-step δ 18 O signal at the Eocene-Oligocene boundary’, Climate of the Past, 7(1), pp. 235–247.  https://doi.org/10.5194/cp-7-235-2011

Timmermann, A., An, S.-I., Kug, J.-S., Jin, F.-F., Cai, W., Capotondi, A., Cobb, K.M., Lengaigne, M., McPhaden, M.J., Stuecker, M.F., and others (2018) ‘El Niño–southern oscillation complexity’, Nature, 559(7715), pp. 535–545.  https://doi.org/10.1038/s41586-018-0252-6

Timmermann, A., Okumura, Y., An, S.-I., Clement, A., Dong, B., Guilyardi, E., Hu, A., Jungclaus, J., Renold, M., Stocker, T.F., and others (2007) ‘The influence of a weakening of the Atlantic meridional overturning circulation on ENSO’, Journal of Climate, 20(19), pp. 4899–4919.  https://doi.org/10.1029/2023GL103025

Toumoulin, A., Tardif, D., Donnadieu, Y., Licht, A., Ladant, J.-B., Kunzmann, L. and Dupont-Nivet, G. (2022) ‘Evolution of continental temperature seasonality from the Eocene greenhouse to the Oligocene icehouse–a model–data comparison’, Climate of the Past, 18(2), pp. 341–362.  https://doi.org/10.5194/cp-18-341-2022

Veron, J.E., Hoegh-Guldberg, O., Lenton, T.M., Lough, J.M., Obura, D.O., Pearce-Kelly, P., Sheppard, C.R., Spalding, M., Stafford-Smith, M.G. and Rogers, A.D. (2009) ‘The coral reef crisis: The critical importance of <350 ppm CO2’, Marine Pollution Bulletin, 58(10), pp. 1428–1436.  https://doi.org/10.1016/j.marpolbul.2009.09.009

Vettoretti, G. and Peltier, W.R. (2016) ‘Thermohaline instability and the formation of glacial North Atlantic super polynyas at the onset of Dansgaard-Oeschger warming events’, Geophysical Research Letters, 43(10), pp. 5336–5344.   https://doi.org/10.1002/2016GL068891

Via, R.K. and Thomas, D.J. (2006) ‘Evolution of Atlantic thermohaline circulation: Early Oligocene onset of deep-water production in the North Atlantic’, Geology, 34(6), pp. 441–444.  https://doi.org/10.1130/G22545.1

de Vrese, P., Georgievski, G., Gonzalez Rouco, J.F., Notz, D., Stacke, T., Steinert, N.J., Wilkenskjeld, S. and Brovkin, V. (2023) ‘Representation of soil hydrology in permafrost regions may explain large part of inter-model spread in simulated Arctic and subarctic climate’, The Cryosphere, 17(5), pp. 2095–2118.  https://doi.org/10.5194/tc-17-2095-2023

Wang, G., Cai, W., Gan, B., Wu, L., Santoso, A., Lin, X., Chen, Z. and McPhaden, M.J. (2017) ‘Continued increase of extreme El Niño frequency long after 1.5 C warming stabilization’, Nature Climate Change, 7(8), pp. 568–572.  https://doi.org/10.1038/nclimate3351

Wang, S., Foster, A., Lenz, E.A., Kessler, J.D., Stroeve, J.C., Anderson, L.O., Turetsky, M., Betts, R., Zou, S., Liu, W., and others (2023) ‘Mechanisms and impacts of Earth system tipping elements’, Reviews of Geophysics, 61(1), p. e2021RG000757.  https://doi.org/10.1029/2021RG000757

Wang, X., Auler, A.S., Edwards, R.L., Cheng, H., Cristalli, P.S., Smart, P.L., Richards, D.A. and Shen, C.-C. (2004) ‘Wet periods in northeastern Brazil over the past 210 kyr linked to distant climate anomalies’, Nature, 432(7018), pp. 740–743.  https://doi.org/10.1038/nature03067

Wassenburg, J.A., Vonhof, H.B., Cheng, H., Martínez-García, A., Ebner, P.-R., Li, X., Zhang, H., Sha, L., Tian, Y., Edwards, R.L., and others (2021) ‘Penultimate deglaciation Asian monsoon response to North Atlantic circulation collapse’, Nature Geoscience, 14(12), pp. 937–941.  https://doi.org/10.1038/s41561-021-00851-9

Weaver, A.J., Saenko, O.A., Clark, P.U. and Mitrovica, J.X. (2003) ‘Meltwater pulse 1A from antarctica as a trigger of the bølling-allerød warm interval’, Science (New York, N.Y.), 299(5613), pp. 1709–1713.  https://doi.org/10.1126/science.1081002

Weertman, J. (1974) ‘Stability of the junction of an ice sheet and an ice shelf’, Journal of Glaciology, 13(67), pp. 3–11.  https://doi.org/10.3189/S0022143000023327

Wengel, C., Lee, S.-S., Stuecker, M.F., Timmermann, A., Chu, J.-E. and Schloesser, F. (2021) ‘Future high-resolution El Niño/Southern oscillation dynamics’, Nature Climate Change, 11(9), pp. 758–765.  https://doi.org/10.1038/s41558-021-01132-4

Winkelmann, R., Donges, J.F., Smith, E.K., Milkoreit, M., Eder, C., Heitzig, J., Katsanidou, A., Wiedermann, M., Wunderling, N. and Lenton, T.M. (2022) ‘Social tipping processes towards climate action: a conceptual framework’, Ecological Economics, 192, p. 107242.  https://doi.org/10.1016/j.ecolecon.2021.107242

Wunderling, N., Donges, J.F., Kurths, J. and Winkelmann, R. (2021a) ‘Interacting tipping elements increase risk of climate domino effects under global warming’, Earth System Dynamics, 12(2), pp. 601–619.  https://doi.org/10.5194/esd-12-601-2021

Wunderling, N., von der Heydt, A., Aksenov, Y., Barker, S., Bastiaansen, R., Brovkin, V., Brunetti, M., Couplet, V., Kleinen, T., Lear, C.H., Lohmann, J., Roman-Cuesta, R.M., Sinet, S., Swingedouw, D., Winkelmann, R., Anand, P., Barichivich, J., Bathiany, S., Baudena, M., Bruun, J.T., Chiessi, C.M., Coxall, H.K., Docquier, D., Donges, J.F., Falkena, S.K.J., Klose, A.K., Obura, D., Rocha, J., Rynders, S., Steinert, N.J. and Willeit, M. (2023a) ‘Climate tipping point interactions and cascades: A review’, EGUsphere, pp. 1–45.  https://doi.org/10.5194/egusphere-2023-1576.

Wunderling, N., Krönke, J., Wohlfarth, V., Kohler, J., Heitzig, J., Staal, A., Willner, S., Winkelmann, R. and Donges, J.F. (2021b) ‘Modelling nonlinear dynamics of interacting tipping elements on complex networks: the PyCascades package’, The European Physical Journal Special Topics, 230(14–15), pp. 3163–3176.

Wunderling, N., Staal, A., Sakschewski, B., Hirota, M., Tuinenburg, O.A., Donges, J.F., Barbosa, H.M. and Winkelmann, R. (2022) ‘Recurrent droughts increase risk of cascading tipping events by outpacing adaptive capacities in the Amazon rainforest’, Proceedings of the National Academy of Sciences, 119(32), p. E2120777119.  https://doi.org/10.1073/pnas.2120777119

Wunderling, N., Willeit, M., Donges, J.F. and Winkelmann, R. (2020a) ‘Global warming due to loss of large ice masses and Arctic summer sea ice’, Nature Communications, 11(1), pp. 1–8.  https://doi.org/10.1038/s41467-020-18934-3

Wunderling, N., Winkelmann, R., Rockström, J., Loriani, S., Armstrong McKay, D.I., Ritchie, P.D., Sakschewski, B. and Donges, J.F. (2023b) ‘Global warming overshoots increase risks of climate tipping cascades in a network model’, Nature Climate Change, 13(1), pp. 75–82.  https://doi.org/10.1038/s41558-022-01545-9

Zemp, D.C., Schleussner, C.-F., Barbosa, H.M., Hirota, M., Montade, V., Sampaio, G., Staal, A., Wang-Erlandsson, L. and Rammig, A. (2017) ‘Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks’, Nature Communications, 8(1), pp. 1–10.  https://doi.org/10.1038/ncomms14681

Zhang, N., Feng, M., Hendon, H.H., Hobday, A.J. and Zinke, J. (2017) ‘Opposite polarities of ENSO drive distinct patterns of coral bleaching potentials in the southeast Indian Ocean’, Scientific Reports, 7(1), p. 2443.  https://doi.org/10.1038/s41598-017-02688-y

Zhang, X., Lohmann, G., Knorr, G. and Purcell, C. (2014) ‘Abrupt glacial climate shifts controlled by ice sheet changes’, Nature, 512(7514), pp. 290–294.  https://doi.org/10.1038/nature13592

Zular, A., Sawakuchi, A.O., Chiessi, C.M., d’Horta, F.M., Cruz, F.W., Demattê, J.A.M., Ribas, C.C., Hartmann, G.A., Giannini, P.C.F. and Soares, E.A.A. (2019) ‘The role of abrupt climate change in the formation of an open vegetation enclave in northern Amazonia during the late Quaternary’, Global and Planetary Change, 172, pp. 140–149.  https://doi.org/10.1016/j.gloplacha.2018.09.006

Chapter 1.6

Arellano-Nava, B. et al. (2022) ‘Destabilisation of the Subpolar North Atlantic prior to the Little Ice Age’, Nature Communications, 13(1).  https://doi.org/10.1038/s41467-022-32653-x

Armstrong McKay, D.I. et al. (2022) ‘Exceeding 1.5°C global warming could trigger multiple climate tipping points’, Science, 377(6611).  https://doi.org/10.1126/science.abn7950

Aschwanden, A. et al. (2019) ‘Contribution of the Greenland Ice Sheet to sea level over the next millennium’, Sci. Adv., 5(6)  https://doi.org/10.1126/sciadv.aav9396

Ashwin, P. et al. (2012) ‘Tipping points in open systems: Bifurcation, noise-induced and rate-dependent examples in the climate system’, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 370(1962), pp. 1166–1184.  https://doi.org/10.1098/rsta.2011.0306

Bathiany, S. et al. (2016a) ‘Statistical indicators of Arctic sea-ice stability-prospects and limitations’, Cryosphere, 10(4), pp. 1631–1645.  https://doi.org/10.5194/tc-10-1631-2016

Bathiany, S. et al. (2016b) ‘On the Potential for Abrupt Arctic Winter Sea Ice Loss’, American Meteorological Society.  https://doi.org/10.1175/JCLI-D-15-0466.1 

Ben-Yami, M. et al. (2023) ‘Uncertainties too large to predict tipping times of major Earth system components’.  https://doi.org/10.48550/arXiv.2309.08521

Berdugo, M., Kéfi, S., Soliveres, S. and Maestre, F.T., 2017. Plant spatial patterns identify alternative ecosystem multifunctionality states in global drylands. Nature ecology & evolution, 1(2), p.0003.

Blaschke, L.L. et al. (2023) Spatial correlation increase in single-sensor satellite [Preprint].  https://doi.org/10.48550/arXiv.2310.18540 

Boerlijst, M.C., Oudman, T. and Roos, A.M. de (2013) ‘Catastrophic Collapse Can Occur without Early Warning: Examples of Silent Catastrophes in Structured Ecological Models’, PLoS ONE, 8(4).  https://doi.org/10.1371/journal.pone.0062033

Boers, N. (2021) ‘Observation-based early-warning signals for a collapse of the Atlantic Meridional Overturning Circulation’, Nature Climate Change, 11(8), pp. 680–688.  https://doi.org/10.1038/s41558-021-01097-4

Boers, N. and Rypdal, M. (2021) ‘Critical slowing down suggests that the western Greenland Ice Sheet is close to a tipping point’.  https://doi.org/10.1073/pnas.2024192118

Bojinski, S. et al. (2014) ‘The concept of essential climate variables in support of climate research, applications, and policy’, Bulletin of the American Meteorological Society, 95(9), pp. 1431–1443.  https://doi.org/10.1175/BAMS-D-13-00047.1

Boulton, C.A., Allison, L.C. and Lenton, T.M. (2014) ‘Early warning signals of atlantic meridional overturning circulation collapse in a fully coupled climate model’, Nature Communications, 5.  https://doi.org/10.1038/ncomms6752

Boulton, C.A., Good, P. and Lenton, T.M. (2013) ‘Early warning signals of simulated Amazon rainforest dieback’, Theoretical Ecology, 6(3), pp. 373–384.  https://doi.org/10.1007/s12080-013-0191-7

Boulton, C.A. and Lenton, T.M. (2015) ‘Slowing down of North Pacific climate variability and its implications for abrupt ecosystem change’, Proceedings of the National Academy of Sciences of the United States of America, 112(37), pp. 11496–11501.  https://doi.org/10.1073/pnas.1501781112

Boulton, C.A., Lenton, T.M. and Boers, N. (2022) ‘Pronounced loss of Amazon rainforest resilience since the early 2000s’, Nature Climate Change, 12(3), pp. 271–278.  https://doi.org/10.1038/s41558-022-01287-8

Bury, T.M. et al. (2021) ‘Deep learning for early warning signals of tipping points’, PNAS, 118(39).  https://doi.org/10.1073/pnas.2106140118 

Cavaliere, M. et al. (2016) ‘Detecting the Collapse of Cooperation in Evolving Networks’, Scientific Reports, 6.  https://doi.org/10.1038/srep30845

Dakos, V. et al. (2008) Slowing down as an early warning signal for abrupt climate change.  https://doi.org/10.1073/pnas.0802430105

Dakos, V. et al. (2023) ‘Tipping Point Detection and Early-Warnings in climate, ecological, and human systems’, Earth System Dynamics [Preprint].  https://doi.org/10.5194/egusphere-2023-1773

Dakos, V., Nes, E.H. van and Scheffer, M. (2013) ‘Flickering as an early warning signal’, Theoretical Ecology, 6(3), pp. 309–317.  https://doi.org/10.1007/s12080-013-0186-4

Deb, S. et al. (2022) ‘Machine learning methods trained on simple models can predict critical transitions in complex natural systems’, Royal Society Open Science, 9(2).  https://doi.org/10.1098/rsos.211475

Ditlevsen, P. and Ditlevsen, S. (2023) ‘Warning of a forthcoming collapse of the Atlantic meridional overturning circulation’, Nature Communications, 14(1).  https://doi.org/10.1038/s41467-023-39810-w

Ditlevsen, P.D. and Johnsen, S.J. (2010) ‘Tipping points: Early warning and wishful thinking’, Geophysical Research Letters, 37(19).  https://doi.org/10.1029/2010GL044486

Donges, J.F. et al. (2009) ‘The backbone of the climate network’, EPL, 87(4).  https://doi.org/10.1209/0295-5075/87/48007

Dylewsky Daniel, Lenton Timothy M., Scheffer Marten, Bury Thomas M., Fletcher Christopher G., Anand Madhur and Bauch Chris T. (2023) Universal early warning signals of phase transitions in climate systems J. R. Soc. Interface https://doi.org/10.1098/rsif.2022.0562 

Ebert-Uphoff, I. and Deng, Y. (2012) ‘Causal discovery for climate research using graphical models’, Journal of Climate, 25(17), pp. 5648–5665.  https://doi.org/10.1175/JCLI-D-11-00387.1

Eisenman, I. (2010) ‘Geographic muting of changes in the Arctic sea ice cover’, Geophysical Research Letters, 37(16).  https://doi.org/10.1029/2010GL043741

Eisenman, I. and Wettlaufer, J.S. (2009) ‘Nonlinear threshold behavior during the loss of Arctic sea ice’, PNAS, 106(1): 28–32.  https://doi.org/10.1073/pnas.0806887106

Ferrell, R.A. (1970) Decoupled-mode Dynamic Scaling Theory of the Binary-Liquid Phase Transition., Soviet Phys. Usp. https://doi.org/10.1103/PhysRevLett.24.1169 

Forzieri, G. et al. (2022) ‘Emerging signals of declining forest resilience under climate change’, Nature, 608(7923), pp. 534–539.  https://doi.org/10.1038/s41586-022-04959-9

Goosse, H. et al. (2009) ‘Increased variability of the Arctic summer ice extent in a warmer climate’, Geophysical Research Letters, 36(23).  https://doi.org/10.1029/2009GL040546

Guttal, V. and Jayaprakash, C. (2008) ‘Changing skewness: An early warning signal of regime shifts in ecosystems’, Ecology Letters, 11(5), pp. 450–460.  https://doi.org/10.1007/s12080-008-0033-1 

Hardenberg, J. von et al. (2001) ‘Diversity of vegetation patterns and desertification’, Physical Review Letters, 87(19), pp. 198101-1-198101–4.  https://doi.org/10.1103/PhysRevLett.87.198101

Hawkins, E. et al. (2011) ‘Bistability of the Atlantic overturning circulation in a global climate model and links to ocean freshwater transport’, Geophysical Research Letters, 38(10).  https://doi.org/10.1029/2011GL047208

Held, H. and Kleinen, T., 2004. Detection of climate system bifurcations by degenerate fingerprinting. Geophysical Research Letters, 31(23).  https://doi.org/10.1029/2004GL020972 

Kang, J. et al. (2015) ‘A rational strategy for the realization of chain-growth supramolecular polymerization’, Science, 347(6222), pp. 646–651.  https://doi.org/10.1126/science.aaa4249

Kawasaki, K., 1966. Diffusion constants near the critical point for time-dependent Ising models. I. Physical Review, 145(1), p.224. https://doi.org/10.1103/PhysRev.145.224 

Kéfi, S. et al. (2007) ‘Spatial vegetation patterns and imminent desertification in Mediterranean arid ecosystems’, Nature, 449(7159), pp. 213–217.  https://doi.org/10.1038/nature06111

Kéfi, S. et al. (2011) ‘Robust scaling in ecosystems and the meltdown of patch size distributions before extinction’, Ecology Letters, 14(1), pp. 29–35.  https://doi.org/10.1111/j.1461-0248.2010.01553.x

Kéfi, S. et al. (2014) ‘Early warning signals of ecological transitions: Methods for spatial patterns’, PLoS ONE, 9(3).  https://doi.org/10.1371/journal.pone.0092097

Klose, A.K. et al. (2021) ‘What do we mean, “tipping cascade”?’, Environmental Research Letters, 16(12).  https://doi.org/10.1088/1748-9326/ac3955

Kubo, R. (1966) The fluctuation-dissapation theorem. doi.org/10.1088/0034-4885/29/1/306 

Kuehn, C. (2013) ‘A mathematical framework for critical transitions: Normal forms, variance and applications’, Journal of Nonlinear Science, 23(3), pp. 457–510.  https://doi.org/10.1007/s00332-012-9158-x

Lade, S.J. and Gross, T. (2012) ‘Early warning signals for critical transitions: A generalized modeling approach’, PLoS Computational Biology, 8(2).  https://doi.org/10.1371/journal.pcbi.1002360

Lenton, T.M. et al. (2008) Tipping elements in the Earth’s climate system.  https://doi.org/10.1073/pnas.0705414105 

Lever, J.J., van de Leemput, I.A., Weinans, E., Quax, R., Dakos, V., van Nes, E.H., Bascompte, J. and Scheffer, M., 2020. Foreseeing the future of mutualistic communities beyond collapse. Ecology letters, 23(1), pp.2-15.  https://doi.org/10.1111/ele.13401 

Levermann, A. and Winkelmann, R. (2016) ‘A simple equation for the melt elevation feedback of ice sheets’, Cryosphere, 10(4), pp. 1799–1807.  https://doi.org/10.5194/tc-10-1799-2016

Livina, V.N. and Lenton, T.M. (2013) ‘A recent tipping point in the Arctic sea-ice cover: Abrupt and persistent increase in the seasonal cycle since 2007’, Cryosphere, 7(1), pp. 275–286.  https://doi.org/10.5194/tc-7-275-2013

Lu, Z. et al. (2021) ‘Early Warning of the Pacific Decadal Oscillation Phase Transition Using Complex Network Analysis’, Geophysical Research Letters, 48(7).  https://doi.org/10.1029/2020GL091674

Lutes, O.S., Clayton, D.A. and Kawasaki, K. (1966) Diffusion Constants near the Critical Point for Time-Dependent Ising Models. I.

Mantuna, N.J. and Hare, S.R. (2002) ‘The Pacific Decadal Oscillation’, Journal of Oceanography, 58, pp. 35–44. https://doi.org/10.1023/A:1015820616384 

Mayfield, R.J. et al. (2020) ‘Metrics of structural change as indicators of chironomid community stability in high latitude lakes’, Quaternary Science Reviews, 249.  https://doi.org/10.1016/j.quascirev.2020.106594

Merryfield, W.J., Holland, M.M. and Monahan, A.H. (2008) ‘Multiple Equilibria and Abrupt Transitions in Arctic Summer Sea Ice Extent’, Arctic Sea Ice Decline: Observations, Projections, Mechanisms, and Implications (eds E.T. DeWeaver, C.M. Bitz and L.-.-B. Tremblay).  https://doi.org/10.1029/180GM11

Miloslavich, P. et al. (2018) ‘Essential ocean variables for global sustained observations of biodiversity and ecosystem changes’, Global Change Biology, 24(6), pp. 2416–2433.  https://doi.org/10.1111/gcb.14108

Moon, W. and Wettlaufer, J.S. (2011) ‘A low-order theory of Arctic sea ice stability’, EPL, 96(3).  https://doi.org/10.1209/0295-5075/96/39001

Noël, B. et al. (2017) ‘A tipping point in refreezing accelerates mass loss of Greenland’s glaciers and ice caps’, Nature Communications, 8.  https://doi.org/10.1038/ncomms14730

Nowack, P. et al. (2020) ‘Causal networks for climate model evaluation and constrained projections’, Nature Communications, 11(1).  https://doi.org/10.1038/s41467-020-15195-y

Parry, I.M., Ritchie, P.D.L. and Cox, P.M. (2022) ‘Evidence of localised Amazon rainforest dieback in CMIP6 models’, Earth System Dynamics, 13(4), pp. 1667–1675.  https://doi.org/10.5194/esd-13-1667-2022

Pereira, H. M., et al. (2013) ‘Essential biodiversity variables’, Science 339, 277-278.  https://doi.org/10.1126/science.1229931

Rietkerk, M. et al. (2002) Self-Organization of Vegetation in Arid Ecosystems, The American Naturalist 160(4) pp. 524–530. https://doi.org/10.1086/342078 

Rietkerk, M. and Van de Koppel, J., (2008). Regular pattern formation in real ecosystems. Trends in ecology & evolution, 23(3), pp.169-175 https://doi.org/10.1016/j.tree.2007.10.013 

Rietkerk, M., Bastiaansen, R., Banerjee, S., van de Koppel, J., Baudena, M. and Doelman, A., 2021. Evasion of tipping in complex systems through spatial pattern formation. Science, 374(6564) doi.org/10.1126/science.abj0359 

Ritchie, P.D.L. et al. (2022) ‘Increases in the temperature seasonal cycle indicate long-term drying trends in Amazonia’, Communications Earth and Environment, 3(1).  https://doi.org/10.1038/s43247-022-00528-0

Ritchie, P. and Sieber, J., (2016). Early-warning indicators for rate-induced tipping. Chaos: An Interdisciplinary Journal of Nonlinear Science, 26(9). https://doi.org/10.1063/1.4963012 

Rosier, S.H.R. et al. (2021) ‘The tipping points and early warning indicators for Pine Island Glacier, West Antarctica’, Cryosphere, 15(3), pp. 1501–1516.  https://doi.org/10.5194/tc-15-1501-2021

Ryan, J.C. et al. (2019) Greenland Ice Sheet surface melt amplified by snowline migration and bare ice exposure, Sci. Adv.  https://doi.org/10.1126/sciadv.aav3738

Scheffer, M., Bascompte, J., Brock, W.A., Brovkin, V., Carpenter, S.R., Dakos, V., Held, H., Van Nes, E.H., Rietkerk, M. and Sugihara, G., 2009. Early-warning signals for critical transitions. Nature, 461(7260), pp.53-59

Setty, S., Cramwinckel, M.J., van Nes, E.H., van de Leemput, I.A., Dijkstra, H.A., Lourens, L.J., Scheffer, M. and Sluijs, A., 2023. Loss of Earth system resilience during early Eocene transient global warming events. Science advances, 9(14), p.eade5466. https://doi.org/10.1126/sciadv.ade5466

Sinet, S., Heydt, A.S. von der and Dijkstra, H.A. (2023) ‘AMOC Stabilization Under the Interaction With Tipping Polar Ice Sheets’, Geophysical Research Letters, 50(2).  https://doi.org/10.1029/2022GL100305.

Smith, T., Zotta, R.M., Boulton, C.A., Lenton, T.M., Dorigo, W. and Boers, N., (2023) Reliability of resilience estimation based on multi-instrument time series. Earth System Dynamics, 14(1), pp.173-183. https://doi.org/10.5194/esd-14-173-2023 

Thorndike, A.S. et al. (1975) ‘The thickness distribution of sea ice’, Journal of Geophysical Research, 80(33), pp. 4501–4513.  https://doi.org/10.1029/jc080i033p04501

Tirabassi, G. et al. (2014) ‘Interaction network based early-warning indicators of vegetation transitions’, Ecological Complexity, 19, pp. 148–157.  https://doi.org/10.1016/j.ecocom.2014.06.004

Tsonis, A.A. and Roebber, P.J. (2004) ‘The architecture of the climate network’, Physica A: Statistical Mechanics and its Applications, 333(1–4), pp. 497–504.  https://doi.org/10.1016/j.physa.2003.10.045

Villa Martín, P., Bonachela, J.A., Levin, S.A. and Muñoz, M.A., 2015. Eluding catastrophic shifts. Proceedings of the National Academy of Sciences, 112(15), pp.E1828-E1836. https://doi.org/10.1073/pnas.1414708112

Wagner, T.J.W. and Eisenman, I. (2015) ‘False alarms: How early warning signals falsely predict abrupt sea ice loss’, Geophysical Research Letters, 42(23), pp. 10333–10341.  https://doi.org/10.1002/2015GL066297

Wang, R. et al. (2012) ‘Flickering gives early warning signals of a critical transition to a eutrophic lake state’, Nature, 492(7429), pp. 419–422.  https://doi.org/10.1038/nature11655

Wang, R., Dearing, J.A., Doncaster, C.P., Yang, X., Zhang, E., Langdon, P.G., Yang, H., Dong, X., Hu, Z., Xu, M. and Zhao, Y., 2019. Network parameters quantify loss of assemblage structure in human‐impacted lake ecosystems. Global Change Biology, 25(11), pp.3871-3882. https://doi.org/10.1111/gcb.14776 

Weinans, E., Lever, J.J., Bathiany, S., Quax, R., Bascompte, J., Van Nes, E.H., Scheffer, M. and Van De Leemput, I.A., 2019. Finding the direction of lowest resilience in multivariate complex systems. Journal of the Royal Society Interface, 16(159), p.20190629. https://doi.org/10.1098/rsif.2019.0629 

Weinans, E. et al. (2021) ‘Evaluating the performance of multivariate indicators of resilience loss’, Scientific Reports, 11(1).  https://doi.org/10.1038/s41598-021-87839-y

Williamson, M. S., Bathiany, S., and Lenton, T. M. (2016) ‘Early warning signals of tipping points in periodically forced systems’, Earth Syst. Dynam., 7, 313–326.  https://doi.org/10.5194/esd-7-313-2016

Wissel, C. (1984) A Universal Law of the Characteristic Return Time near Thresholds, pp. 101–107. https://doi.org/10.1007/BF00384470 Yin, Z. et al. (2016) ‘Network based early warning indicators of vegetation changes in a land-atmosphere model’, Ecological Complexity, 26, pp. 68–78.  https://doi.org/10.1016/j.ecocom.2016.02.004.

Chapter 1.7

Climate Action Tracker (2022) The CAT Thermometer. Climate Analytics and NewClimate Institute.  https://climateactiontracker.org/global/cat-thermometer/ (Accessed: 24 October 2023)

International Energy Agency (IEA) (2023) World Energy Outlook 2023.  https://www.iea.org/reports/world-energy-outlook-2023 (Accessed: 24 October 2023)

Meinshausen, M., Lewis, J., McGlade, C., Gütschow, J., Nicholls, Z., Burdon, R., Cozzi, L. and Hackmann, B. (2022) ‘Realization of Paris Agreement pledges may limit warming just below 2 °C’, Nature, 604(7905), pp. 304–309.  https://doi.org/10.1038/s41586-022-04553-z

Bezos Earth Fund University of Exeter logo
Earth Commission Systems Change Lab logo Systemiq logo
Global Tipping Points logo
Share this content
Top