Harmful tipping points in the natural world pose some of the gravest threats faced by humanity. Their triggering will severely damage our planet’s life-support systems and threaten the stability of our societies.
In the Summary Report:
• Narrative summary
• Global tipping points infographic
• Key messages
• Key Recommendations
Executive summary
• Section 1
• Section 2
• Section 3
• Section 4
This report is for all those concerned with tackling escalating Earth system change and mobilising transformative social change to alter that trajectory, achieve sustainability and promote social justice.
In this section:
• Foreword
• Introduction
• Key Concepts
• Approach
• References
Considers Earth system tipping points. These are reviewed and assessed across the three major domains of the cryosphere, biosphere and circulation of the oceans and atmosphere. We then consider the interactions and potential cascades of Earth system tipping points, followed by an assessment of early warning signals for Earth system tipping points.
Considers tipping point impacts. First we look at the human impacts of Earth system tipping points, then the potential couplings to negative tipping points in human systems. Next we assess the potential for cascading and compounding systemic risk, before considering the potential for early warning of impact tipping points.
Considers how to govern Earth system tipping points and their associated risks. We look at governance of mitigation, prevention and stabilisation then we focus on governance of impacts, including adaptation, vulnerability and loss and damage. Finally, we assess the need for knowledge generation at the science-policy interface.
Focuses on positive tipping points in technology, the economy and society. It provides a framework for understanding and acting on positive tipping points. We highlight illustrative case studies across energy, food and transport and mobility systems, with a focus on demand-side solutions (which have previously received limited attention).
Much research on tipping points has focused on global and damaging biophysical trends, rather than on the human and social dimensions of Earth system tipping, including likely social impacts, responses, solutions and governance options. Future knowledge production should consider not only the content, but also the characteristics, of the information needed to support decision making. Below we first address key knowledge characteristics (solutions-oriented and actionable, context-specific and actor-relevant, future-oriented/anticipatory, and transformative). We then consider which knowledge-production processes and systems would be needed to support the development of this type of knowledge regarding ESTPs, including co-production and effective sharing in knowledge networks across scales, and to foster imagination and anticipation.